Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ales Cvekl is active.

Publication


Featured researches published by Ales Cvekl.


Molecular and Cellular Biology | 1994

A complex array of positive and negative elements regulates the chicken alpha A-crystallin gene: involvement of Pax-6, USF, CREB and/or CREM, and AP-1 proteins.

Ales Cvekl; Christina M. Sax; Emery H. Bresnick; Joram Piatigorsky

The abundance of crystallins (> 80% of the soluble protein) in the ocular lens provides advantageous markers for selective gene expression during cellular differentiation. Here we show by functional and protein-DNA binding experiments that the chicken alpha A-crystallin gene is regulated by at least five control elements located at sites A (-148 to -139), B (-138 to -132), C (-128 to -101), D (-102 to -93), and E (-56 to -41). Factors interacting with these sites were characterized immunologically and by gel mobility shift experiments. The results are interpreted with the following model. Site A binds USF and is part of a composite element with site B. Site B binds CREB and/or CREM to enhance expression in the lens and binds an AP-1 complex including CREB, Fra2 and/or JunD which interacts with USF on site A to repress expression in fibroblasts. Sites C and E (which is conserved across species) bind Pax-6 in the lens to stimulate alpha A-crystallin promoter activity. These experiments provide the first direct data that Pax-6 contributes to the lens-specific expression of a crystallin gene. Site D (-104 to -93) binds USF and is a negative element. Thus, the data indicate that USF, CREB and/or CREM (or AP-1 factors), and Pax-6 bind a complex array of positive and negative cis-acting elements of the chicken alpha A-crystallin gene to control high expression in the lens and repression in fibroblasts.


Progress in Retinal and Eye Research | 2007

Genetic and epigenetic mechanisms of gene regulation during lens development

Ales Cvekl; Melinda K. Duncan

Recent studies demonstrated a number of links between chromatin structure, gene expression, extracellular signaling and cellular differentiation during lens development. Lens progenitor cells originate from a pool of common progenitor cells, the pre-placodal region (PPR) which is formed from a combination of extracellular signaling between the neural plate, naïve ectoderm and mesendoderm. A specific commitment to the lens program over alternate choices such as the formation of olfactory epithelium or the anterior pituitary is manifested by the formation of a thickened surface ectoderm, the lens placode. Mouse lens progenitor cells are characterized by the expression of a complement of lens lineage-specific transcription factors including Pax6, Six3 and Sox2, controlled by FGF and BMP signaling, followed later by c-Maf, Mab21like1, Prox1 and FoxE3. Proliferation of lens progenitors together with their morphogenetic movements results in the formation of the lens vesicle. This transient structure, comprised of lens precursor cells, is polarized with its anterior cells retaining their epithelial morphology and proliferative capacity, whereas the posterior lens precursor cells initiate terminal differentiation forming the primary lens fibers. Lens differentiation is marked by expression and accumulation of crystallins and other structural proteins. The transcriptional control of crystallin genes is characterized by the reiterative use of transcription factors required for the establishment of lens precursors in combination with more ubiquitously expressed factors (e.g. AP-1, AP-2alpha, CREB and USF) and recruitment of histone acetyltransferases (HATs) CBP and p300, and chromatin remodeling complexes SWI/SNF and ISWI. These studies have poised the study of lens development at the forefront of efforts to understand the connections between development, cell signaling, gene transcription and chromatin remodeling.


Molecular and Cellular Biology | 1998

Dual Roles for Pax-6: a Transcriptional Repressor of Lens Fiber Cell-Specific β-Crystallin Genes

Melinda K. Duncan; John I. Haynes; Ales Cvekl; Joram Piatigorsky

ABSTRACT It has been demonstrated previously that Pax-6, a paired domain (PD)/homeodomain (HD) transcription factor critical for eye development, contributes to the activation of the αB-, αA-, δ1-, and ζ-crystallin genes in the lens. Here we have examined the possibility that the inverse relationship between the expression of Pax-6 and β-crystallin genes within the developing chicken lens reflects a negative regulatory role of Pax-6. Cotransfection of a plasmid containing the βB1-crystallin promoter fused to the chloramphenicol acetyltransferase reporter gene and a plasmid containing the full-length mouse Pax-6 coding sequences into primary embryonic chicken lens epithelial cells or fibroblasts repressed the activity of this promoter by as much as 90%. Pax-6 constructs lacking the C-terminal activation domain repressed βB1-crystallin promoter activity as effectively as the full-length protein, but the PD alone or Pax-6 (5a), a splice variant with an altered PD affecting its DNA binding specificity, did not. DNase footprinting analysis revealed that truncated Pax-6 (PD+HD) binds to three regions (−183 to −152, −120 to −48, and −30 to +1) of the βB1-crystallin promoter. Earlier experiments showed that the βB1-crystallin promoter sequence from −120 to −48 contains a cis element (PL2 at −90 to −76) that stimulates the activity of a heterologous promoter in lens cells but not in fibroblasts. In the present study, we show by electrophoretic mobility shift assay and cotransfection that Pax-6 binds to PL2 and represses its ability to activate promoter activity; moreover, mutation of PL2 eliminated binding by Pax-6. Taken together, our data indicate that Pax-6 (via its PD and HD) represses the βB1-crystallin promoter by direct interaction with the PL2 element. We thus suggest that the relatively high concentration of Pax-6 contributes to the absence of βB1-crystallin gene expression in lens epithelial cells and that diminishing amounts of Pax-6 in lens fiber cells during development allow activation of this gene.


Journal of Biological Chemistry | 2003

DACH1 Inhibits Transforming Growth Factor-β Signaling through Binding Smad4

Kongming Wu; Ying Yang; Chenguang Wang; Maria A. Davoli; Mark D'Amico; Anping Li; Kveta Cveklova; Zbynek Kozmik; Michael P. Lisanti; Robert G. Russell; Ales Cvekl; Richard G. Pestell

The vertebrate homologues of Drosophila dachsund, DACH1 and DACH2, have been implicated as important regulatory genes in development. DACH1 plays a role in retinal and pituitary precursor cell proliferation and DACH2 plays a specific role in myogenesis. DACH proteins contain a domain (DS domain) that is conserved with the proto-oncogenes Ski and Sno. Since the Ski/Sno proto-oncogenes repress AP-1 and SMAD signaling, we hypothesized that DACH1 might play a similar cellular function. Herein, DACH1 was found to be expressed in breast cancer cell lines and to inhibit transforming growth factor-β (TGF-β)-induced apoptosis. DACH1 repressed TGF-β induction of AP-1 and Smad signaling in gene reporter assays and repressed endogenous TGF-β-responsive genes by microarray analyses. DACH1 bound to endogenous NCoR and Smad4 in cultured cells and DACH1 co-localized with NCoR in nuclear dotlike structures. NCoR enhanced DACH1 repression, and the repression of TGF-β-induced AP-1 or Smad signaling by DACH1 required the DACH1 DS domain. The DS domain of DACH was sufficient for NCoR binding at a Smad4-binding site. Smad4 was required for DACH1 repression of Smad signaling. In Smad4 null HTB-134 cells, DACH1 inhibited the activation of SBE-4 reporter activity induced by Smad2 or Smad3 only in the presence of Smad4. DACH1 participates in the negative regulation of TGF-β signaling by interacting with NCoR and Smad4.


The EMBO Journal | 2006

Regulation of αA‐crystallin via Pax6, c‐Maf, CREB and a broad domain of lens‐specific chromatin

Ying Yang; Tomas Stopka; Nady Golestaneh; Yan Wang; Kongming Wu; Anping Li; Bharesh K. Chauhan; Chun Y. Gao; Květa Cveklová; Melinda K. Duncan; Richard G. Pestell; Ana B. Chepelinsky; Arthur I. Skoultchi; Ales Cvekl

Pax6 and c‐Maf regulate multiple stages of mammalian lens development. Here, we identified novel distal control regions (DCRs) of the αA‐crystallin gene, a marker of lens fiber cell differentiation induced by FGF‐signaling. DCR1 stimulated reporter gene expression in primary lens explants treated with FGF2 linking FGF‐signaling with αA‐crystallin synthesis. A DCR1/αA‐crystallin promoter (including DCR2) coupled with EGFP virtually recapitulated the expression pattern of αA‐crystallin in lens epithelium and fibers. In contrast, the DCR3/αA/EGFP reporter was expressed only in ‘late’ lens fibers. Chromatin immunoprecipitations showed binding of Pax6 to DCR1 and the αA‐crystallin promoter in lens chromatin and demonstrated that high levels of αA‐crystallin expression correlate with increased binding of c‐Maf and CREB to the promoter and of CREB to DCR3, a broad domain of histone H3K9‐hyperacetylation extending from DCR1 to DCR3, and increased abundance of chromatin remodeling enzymes Brg1 and Snf2h at the αA‐crystallin locus. Our data demonstrate a novel mechanism of Pax6, c‐Maf and CREB function, through regulation of chromatin‐remodeling enzymes, and suggest a multistage model for the activation of αA‐crystallin during lens differentiation.


Molecular and Cellular Biology | 2006

DACH1 Is a Cell Fate Determination Factor That Inhibits Cyclin D1 and Breast Tumor Growth

Kongming Wu; Anping Li; Mahadev Rao; Manran Liu; Vernon K. Dailey; Ying Yang; Dolores Di Vizio; Chenguang Wang; Michael P. Lisanti; Guido Sauter; Robert G. Russell; Ales Cvekl; Richard G. Pestell

ABSTRACT Obstacles to the expansion of cells with proliferative potential include the induction of cell death, telomere-based senescence, and the pRb and p53 tumor suppressors. Not infrequently, the molecular pathways regulating oncogenesis recapitulate aberrations of processes governing embryogenesis. The genetic network, consisting of the dachshund (dac), eyes absent (eya), eyeless, and sine oculis (so) genes, regulates cell fate determination in metazoans, with dac serving as a cointegrator through a So DNA-binding factor. Here, DACH1 inhibited oncogene-mediated breast oncogenesis, blocking breast cancer epithelial cell DNA synthesis, colony formation, growth in Matrigel, and tumor growth in mice. Genetic deletion studies demonstrated a requirement for cyclin D1 in DACH1-mediated inhibition of DNA synthesis. DACH1 repressed cyclin D1 through a novel mechanism via a c-Jun DNA-binding partner, requiring the DACH1 α-helical DS domain which recruits corepressors to the local chromatin. Analysis of over 2,000 patients demonstrated increased nuclear DACH1 expression correlated inversely with cellular mitosis and predicted improved breast cancer patient survival. The cell fate determination factor, DACH1, arrests breast tumor proliferation and growth in vivo providing a new mechanistic and potential therapeutic insight into this common disease.


Experimental Eye Research | 2009

Retinoic acid signaling in mammalian eye development.

Ales Cvekl; Wei Lin Wang

Retinoic acid (RA) is a biologically active metabolite of vitamin A (retinol) that serves as a signaling molecule during a number of developmental and physiological processes. RA signaling plays multiple roles during embryonic eye development. RA signaling is initially required for reciprocal interactions between the optic vesicle and invaginating lens placode. RA signaling promotes normal development of the ventral retina and optic nerve through its activities in the neural crest cell-derived periocular mesenchyme. RA coordinates these processes by regulating biological activities of a family of non-steroid hormone receptors, RARalpha/beta/gamma, and RXRalpha/beta/gamma. These DNA-binding transcription factors recognize DNA as RAR/RXR heterodimers and recruit multiprotein transcriptional co-repressor complexes. RA-binding to RAR receptors induces a conformational change in the receptor, followed by the replacement of co-repressor with co-activator complexes. Inactivation of RARalpha/beta/gamma receptors in the periocular mesenchyme abrogates anterior eye segment formation. This review summarizes recent genetic studies of RA signaling and progress in understanding the molecular mechanism of transcriptional co-activators that function with RAR/RXR.


The Journal of Neuroscience | 2005

Ectopic Norrin Induces Growth of Ocular Capillaries and Restores Normal Retinal Angiogenesis in Norrie Disease Mutant Mice

Andreas Ohlmann; Michael Scholz; Andreas Goldwich; Bharesh K. Chauhan; Kristiane Hudl; Anne V. Ohlmann; Eberhart Zrenner; Wolfgang Berger; Ales Cvekl; Mathias W. Seeliger; Ernst R. Tamm

Norrie disease is an X-linked retinal dysplasia that presents with congenital blindness, sensorineural deafness, and mental retardation. Norrin, the protein product of the Norrie disease gene (NDP), is a secreted protein of unknown biochemical function. Norrie disease (Ndpy/-) mutant mice that are deficient in norrin develop blindness, show a distinct failure in retinal angiogenesis, and completely lack the deep capillary layers of the retina. We show here that the transgenic expression of ectopic norrin under control of a lens-specific promoter restores the formation of a normal retinal vascular network in Ndpy/- mutant mice. The improvement in structure correlates with restoration of neuronal function in the retina. In addition, lenses of transgenic mice with ectopic expression of norrin show significantly more capillaries in the hyaloid vasculature that surrounds the lens during development. In vitro, lenses of transgenic mice in coculture with microvascular endothelial cells induce proliferation of the cells. Transgenic mice with ectopic expression of norrin show more bromodeoxyuridine-labeled retinal progenitor cells at embryonic day 14.5 and thicker retinas at postnatal life than wild-type littermates, indicating a putative direct neurotrophic effect of norrin. These data provide direct evidence that norrin induces growth of ocular capillaries and that pharmacologic modulation of norrin might be used for treatment of the vascular abnormalities associated with Norrie disease or other vascular disorders of the retina.


Journal of Biological Chemistry | 2002

Identification of Genes Downstream of Pax6 in the Mouse Lens Using cDNA Microarrays

Bharesh K. Chauhan; Nathan A. Reed; Weijia Zhang; Melinda K. Duncan; Manfred W. Kilimann; Ales Cvekl

Pax6 is a transcription factor that regulates the development of the visual, olfactory, and central nervous systems, pituitary, and pancreas. Pax6 is required for induction, growth, and maintenance of the lens; however, few direct Pax6 target genes are known. This study was designed to identify batteries of differentially expressed genes in three related systems: 8-week old Pax6 heterozygous lenses, 8-week old Pax6 heterozygous eyes, and transgenic lenses overexpressing PAX6(5a), using high throughput cDNA microarrays containing about 9700 genes. Initially, we obtained almost 400 differentially expressed genes in lenses from mice heterozygous for a Pax6 deletion, suggesting that Pax6 haploinsufficiency causes global changes in the lens transcriptome. Comparisons between the three sets of analyses revealed that paralemmin, molybdopterin synthase sulfurylase,Tel6 oncogene (ETV6), a cleavage-specific factor (Cpsf1) and tangerin A were abnormally expressed in all three experimental models. Semiquantitative reverse transcription (RT)-PCR analysis confirmed that all five of these genes were differentially expressed in Pax-6 heterozygous and Pax6(5a) transgenic lenses. Western blotting and immunohistochemistry demonstrated that paralemmin is found at high levels in the adult lens and confirmed its down-regulation in the Pax6(5a)-transgenic lenses. Collectively, our data provide insights into the genetic programs regulated by Pax6 in the lens.


Development | 2008

Dual requirement for Pax6 in retinal progenitor cells

Varda Oron-Karni; Chen Farhy; Michael Elgart; Till Marquardt; Lena Remizova; Orly Yaron; Qing Xie; Ales Cvekl; Ruth Ashery-Padan

Throughout the developing central nervous system, pre-patterning of the ventricular zone into discrete neural progenitor domains is one of the predominant strategies used to produce neuronal diversity in a spatially coordinated manner. In the retina, neurogenesis proceeds in an intricate chronological and spatial sequence, yet it remains unclear whether retinal progenitor cells (RPCs) display intrinsic heterogeneity at any given time point. Here, we performed a detailed study of RPC fate upon temporally and spatially confined inactivation of Pax6. Timed genetic removal of Pax6 appeared to unmask a cryptic divergence of RPCs into qualitatively divergent progenitor pools. In the more peripheral RPCs under normal circumstances, Pax6 seemed to prevent premature activation of a photoreceptor-differentiation pathway by suppressing expression of the transcription factor Crx. More centrally, Pax6 contributed to the execution of the comprehensive potential of RPCs: Pax6 ablation resulted in the exclusive generation of amacrine interneurons. Together, these data suggest an intricate dual role for Pax6 in retinal neurogenesis, while pointing to the cryptic divergence of RPCs into distinct progenitor pools.

Collaboration


Dive into the Ales Cvekl's collaboration.

Top Co-Authors

Avatar

Ying Yang

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Joram Piatigorsky

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Qing Xie

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Marc Kantorow

Florida Atlantic University

View shared research outputs
Top Co-Authors

Avatar

Bharesh K. Chauhan

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Louise Wolf

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Wei Liu

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Melinda K. Duncan

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Rebecca McGreal

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Ernst R. Tamm

University of Regensburg

View shared research outputs
Researchain Logo
Decentralizing Knowledge