Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rebecca McGreal is active.

Publication


Featured researches published by Rebecca McGreal.


The EMBO Journal | 2017

Programmed mitophagy is essential for the glycolytic switch during cell differentiation

Lorena Esteban-Martínez; Elena Sierra-Filardi; Rebecca McGreal; María Salazar-Roa; Guillermo Mariño; Esther Seco; Sylvère Durand; David Enot; Osvaldo Graña; Marcos Malumbres; Ales Cvekl; Ana Maria Cuervo; Guido Kroemer; Patricia Boya

Retinal ganglion cells (RGCs) are the sole projecting neurons of the retina and their axons form the optic nerve. Here, we show that embryogenesis‐associated mouse RGC differentiation depends on mitophagy, the programmed autophagic clearance of mitochondria. The elimination of mitochondria during RGC differentiation was coupled to a metabolic shift with increased lactate production and elevated expression of glycolytic enzymes at the mRNA level. Pharmacological and genetic inhibition of either mitophagy or glycolysis consistently inhibited RGC differentiation. Local hypoxia triggered expression of the mitophagy regulator BCL2/adenovirus E1B 19‐kDa‐interacting protein 3‐like (BNIP3L, best known as NIX) at peak RGC differentiation. Retinas from NIX‐deficient mice displayed increased mitochondrial mass, reduced expression of glycolytic enzymes and decreased neuronal differentiation. Similarly, we provide evidence that NIX‐dependent mitophagy contributes to mitochondrial elimination during macrophage polarization towards the proinflammatory and more glycolytic M1 phenotype, but not to M2 macrophage differentiation, which primarily relies on oxidative phosphorylation. In summary, developmentally controlled mitophagy promotes a metabolic switch towards glycolysis, which in turn contributes to cellular differentiation in several distinct developmental contexts.


Progress in Molecular Biology and Translational Science | 2015

Lens Development and Crystallin Gene Expression.

Ales Cvekl; Rebecca McGreal; Wei Liu

The eye and lens represent excellent models to understand embryonic development at cellular and molecular levels. Initial 3D formation of the eye depends on a reciprocal invagination of the lens placode/optic vesicle to form the eye primordium, i.e., the optic cup partially surrounding the lens vesicle. Subsequently, the anterior part of the lens vesicle gives rise to the lens epithelium, while the posterior cells of the lens vesicle differentiate into highly elongated lens fibers. Lens fiber differentiation involves cytoskeletal rearrangements, cellular elongation, accumulation of crystallin proteins, production of extracellular matrix for the lens capsule, and degradation of organelles. This chapter summarizes recent advances in lens development and provides insights into the regulatory mechanisms and differentiation at the level of chromatin structure and dynamics, the emerging field of noncoding RNAs, and novel strategies to fill the gaps in our understanding of lens development.


Development | 2016

Chromatin remodeling enzyme Snf2h regulates embryonic lens differentiation and denucleation

Shuying He; Saima Limi; Rebecca McGreal; Qing Xie; Lisa A. Brennan; Wanda Lee Kantorow; Juraj Kokavec; Romit Majumdar; Harry Hou; Winfried Edelmann; Wei Liu; Ruth Ashery-Padan; Jiri Zavadil; Marc Kantorow; Arthur I. Skoultchi; Tomas Stopka; Ales Cvekl

Ocular lens morphogenesis is a model for investigating mechanisms of cellular differentiation, spatial and temporal gene expression control, and chromatin regulation. Brg1 (Smarca4) and Snf2h (Smarca5) are catalytic subunits of distinct ATP-dependent chromatin remodeling complexes implicated in transcriptional regulation. Previous studies have shown that Brg1 regulates both lens fiber cell differentiation and organized degradation of their nuclei (denucleation). Here, we employed a conditional Snf2hflox mouse model to probe the cellular and molecular mechanisms of lens formation. Depletion of Snf2h induces premature and expanded differentiation of lens precursor cells forming the lens vesicle, implicating Snf2h as a key regulator of lens vesicle polarity through spatial control of Prox1, Jag1, p27Kip1 (Cdkn1b) and p57Kip2 (Cdkn1c) gene expression. The abnormal Snf2h−/− fiber cells also retain their nuclei. RNA profiling of Snf2h−/− and Brg1−/− eyes revealed differences in multiple transcripts, including prominent downregulation of those encoding Hsf4 and DNase IIβ, which are implicated in the denucleation process. In summary, our data suggest that Snf2h is essential for the establishment of lens vesicle polarity, partitioning of prospective lens epithelial and fiber cell compartments, lens fiber cell differentiation, and lens fiber cell nuclear degradation. Summary: Depletion of Snf2h induces premature and expanded differentiation of lens precursor cells and reveals the role of Snf2h in lens morphogenesis and denucleation of lens fibers.


Experimental Eye Research | 2013

Chaperone-independent mitochondrial translocation and protection by αB-crystallin in RPE cells

Rebecca McGreal; Lisa A. Brennan; Wanda Lee Kantorow; Jeffrey D. Wilcox; Jianning Wei; Daniel Chauss; Marc Kantorow

αB-crystallin is a small heat shock protein that exhibits chaperone activity and can protect multiple cell types against oxidative stress damage. Altered levels and specific mutations of αB-crystallin are associated with multiple degenerative diseases. We previously found that αB-crystallin translocates to lens and retinal cell mitochondria upon oxidative stress exposure where it provides protection against oxidative stress damage. To date, the role of the chaperone function of αB-crystallin in mitochondrial translocation and protection has not been established. Here, we sought to determine the relationship between the chaperone activity of αB-crystallin and its ability to translocate to and protect retinal cell mitochondria against oxidative stress damage. Our data provide evidence that three forms of αB-crystallin exhibiting different chaperone activity levels including wild-type, R120G (decreased chaperone activity) and M68A (increased chaperone activity) provide comparable levels of mitochondrial translocation and protection to retinal cells exposed to oxidative stress. The results provide evidence that mitochondrial translocation and protection by αB-crystallin is independent of its chaperone activity and that other functions of αB-crystallin may also be independent of its chaperone activity.


Progress in Molecular Biology and Translational Science | 2015

Lens Biology and Biochemistry

J. Fielding Hejtmancik; S. Amer Riazuddin; Rebecca McGreal; Wei Liu; Ales Cvekl; Alan Shiels

The primary function of the lens resides in its transparency and ability to focus light on the retina. These require both that the lens cells contain high concentrations of densely packed lens crystallins to maintain a refractive index constant over distances approximating the wavelength of the light to be transmitted, and a specific arrangement of anterior epithelial cells and arcuate fiber cells lacking organelles in the nucleus to avoid blocking transmission of light. Because cells in the lens nucleus have shed their organelles, lens crystallins have to last for the lifetime of the organism, and are specifically adapted to this function. The lens crystallins comprise two major families: the βγ-crystallins are among the most stable proteins known and the α-crystallins, which have a chaperone-like function. Other proteins and metabolic activities of the lens are primarily organized to protect the crystallins from damage over time and to maintain homeostasis of the lens cells. Membrane protein channels maintain osmotic and ionic balance across the lens, while the lens cytoskeleton provides for the specific shape of the lens cells, especially the fiber cells of the nucleus. Perhaps most importantly, a large part of the metabolic activity in the lens is directed toward maintaining a reduced state, which shelters the lens crystallins and other cellular components from damage from UV light and oxidative stress. Finally, the energy requirements of the lens are met largely by glycolysis and the pentose phosphate pathway, perhaps in response to the avascular nature of the lens. Together, all these systems cooperate to maintain lens transparency over time.


Epigenetics & Chromatin | 2016

Pax6 associates with H3K4-specific histone methyltransferases Mll1, Mll2, and Set1a and regulates H3K4 methylation at promoters and enhancers.

Jian Sun; Yilin Zhao; Rebecca McGreal; Yamit Cohen-Tayar; Shira Rockowitz; Carola Wilczek; Ruth Ashery-Padan; David Shechter; Deyou Zheng; Ales Cvekl

BackgroundPax6 is a key regulator of the entire cascade of ocular lens formation through specific binding to promoters and enhancers of batteries of target genes. The promoters and enhancers communicate with each other through DNA looping mediated by multiple protein–DNA and protein–protein interactions and are marked by specific combinations of histone posttranslational modifications (PTMs). Enhancers are distinguished from bulk chromatin by specific modifications of core histone H3, including H3K4me1 and H3K27ac, while promoters show increased H3K4me3 PTM. Previous studies have shown the presence of Pax6 in as much as 1/8 of lens-specific enhancers but a much smaller fraction of tissue-specific promoters. Although Pax6 is known to interact with EP300/p300 histone acetyltransferase responsible for generation of H3K27ac, a potential link between Pax6 and histone H3K4 methylation remains to be established.ResultsHere we show that Pax6 co-purifies with H3K4 methyltransferase activity in lens cell nuclear extracts. Proteomic studies show that Pax6 immunoprecipitates with Set1a, Mll1, and Mll2 enzymes, and their associated proteins, i.e., Wdr5, Rbbp5, Ash2l, and Dpy30. ChIP-seq studies using chromatin prepared from mouse lens and cultured lens cells demonstrate that Pax6-bound regions are mostly enriched with H3K4me2 and H3K4me1 in enhancers and promoters, though H3K4me3 marks only Pax6-containing promoters. The shRNA-mediated knockdown of Pax6 revealed down-regulation of a set of direct target genes, including Cap2, Farp1, Pax6, Plekha1, Prox1, Tshz2, and Zfp536. Pax6 knockdown was accompanied by reduced H3K4me1 at enhancers and H3K4me3 at promoters, with little or no changes of the H3K4me2 modifications. These changes were prominent in Plekha1, a gene regulated by Pax6 in both lens and retinal pigmented epithelium.ConclusionsOur study supports a general model of Pax6-mediated recruitment of histone methyltransferases Mll1 and Mll2 to lens chromatin, especially at distal enhancers. Genome-wide data in lens show that Pax6 binding correlates with H3K4me2, consistent with the idea that H3K4me2 PTMs correlate with the binding of transcription factors. Importantly, partial reduction of Pax6 induces prominent changes in local H3K4me1 and H3K4me3 modification. Together, these data open the field to mechanistic studies of Pax6, Mll1, Mll2, and H3K4me1/2/3 dynamics at distal enhancers and promoters of developmentally controlled genes.


Genome Biology and Evolution | 2017

Evolutionary Origins of Pax6 Control of Crystallin Genes

Ales Cvekl; Yilin Zhao; Rebecca McGreal; Qing Xie; Xun Gu; Deyou Zheng

Abstract The birth of novel genes, including their cell-specific transcriptional control, is a major source of evolutionary innovation. The lens-preferred proteins, crystallins (vertebrates: α- and β/γ-crystallins), provide a gateway to study eye evolution. Diversity of crystallins was thought to originate from convergent evolution through multiple, independent formation of Pax6/PaxB-binding sites within the promoters of genes able to act as crystallins. Here, we propose that αB-crystallin arose from a duplication of small heat shock protein (Hspb1-like) gene accompanied by Pax6-site and heat shock element (HSE) formation, followed by another duplication to generate the αA-crystallin gene in which HSE was converted into another Pax6-binding site. The founding β/γ-crystallin gene arose from the ancestral Hspb1-like gene promoter inserted into a Ca2+-binding protein coding region, early in the cephalochordate/tunicate lineage. Likewise, an ancestral aldehyde dehydrogenase (Aldh) gene, through multiple gene duplications, expanded into a multigene family, with specific genes expressed in invertebrate lenses (Ω-crystallin/Aldh1a9) and both vertebrate lenses (η-crystallin/Aldh1a7 and Aldh3a1) and corneas (Aldh3a1). Collectively, the present data reconstruct the evolution of diverse crystallin gene families.


Molecular Vision | 2012

Spatial expression patterns of autophagy genes in the eye lens and induction of autophagy in lens cells

Lisa A. Brennan; Wanda Lee Kantorow; Daniel Chauss; Rebecca McGreal; Shuying He; Lyndzie Mattucci; Jianning Wei; S. Amer Riazuddin; Ales Cvekl; J. Fielding Hejtmancik; Marc Kantorow


Frontiers in Bioscience | 2012

Oxidative stress defense and repair systems of the ocular lens.

Lisa A. Brennan; Rebecca McGreal; Marc Kantorow


Investigative Ophthalmology & Visual Science | 2017

Promoter-enhancer interactions and regulation of αA-crystallin locus during lens fiber cell differentation

Rebecca McGreal; Louise Wolf; Ales Cvekl

Collaboration


Dive into the Rebecca McGreal's collaboration.

Top Co-Authors

Avatar

Lisa A. Brennan

Florida Atlantic University

View shared research outputs
Top Co-Authors

Avatar

Marc Kantorow

Florida Atlantic University

View shared research outputs
Top Co-Authors

Avatar

Ales Cvekl

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Daniel Chauss

Florida Atlantic University

View shared research outputs
Top Co-Authors

Avatar

Wanda Lee

Florida Atlantic University

View shared research outputs
Top Co-Authors

Avatar

Deyou Zheng

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Qing Xie

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Saima Limi

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Wei Liu

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Yilin Zhao

Albert Einstein College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge