Aleš Holoubek
Charles University in Prague
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Aleš Holoubek.
The International Journal of Biochemistry & Cell Biology | 1999
Dana Gášková; Barbora Brodská; Aleš Holoubek; Karel Sigler
No methods are currently available for fully reliable monitoring of membrane potential changes in suspensions of walled cells such as yeast. Our method using the Nernstian cyanine probe diS-C3(3) monitors even relatively fast changes in membrane potential delta psi by recording the shifts of probe fluorescence maximum lambda max consequent on delta psi-dependent probe uptake into, or exit from, the cells. Both increased [K+]out and decreased pHout, but not external NaCl or choline chloride depolarise the membrane. The major ion species contributing to the diS-C3(3)-reported membrane potential in S. cerevisiae are thus K+ and H+, whereas Na+ and Cl- do not perceptibly contribute to measured delta psi. The strongly pHout-dependent depolarisation caused by the protonophores CCCP and FCCP, lack of effect of the respiratory chain inhibitors rotenone and HQNO on the delta psi, as well as results obtained with a respiration-deficient rho- mutant show that the major component of the diS-C3(3)-reported membrane potential is the delta psi formed on the plasma membrane while mitochondrial potential forms a minor part of the delta psi. Its role may be reflected in the slight depolarisation caused by the F1F0-ATPase inhibitor azide in both rho- mutant and wildtype cells. Blocking the plasma membrane H(+)-ATPase with the DMM-11 inhibitor showed that the enzyme participates in delta psi build-up both in the absence and in the presence of added glucose. Pore-forming agents such as nystatin cause a fast probe entry into the cells signifying membrane damage and extensive binding of the probe to cell constituents reflecting obviously disruption of ionic balance in permeabilised cells. In damaged cells the probe therefore no longer reports on membrane potential but on loss of membrane integrity. The delta psi-independent probe entry signalling membrane damage can be distinguished from the potential-dependent diS-C3(3) uptake into intact cells by being insensitive to the depolarising action of CCCP.
Photochemistry and Photobiology | 2001
Jaroslav Večeř; Aleš Holoubek; Karel Sigler
Abstract When exposed to the intracellular environment fluorescent probes sensitive to pH exhibit changes of photophysical characteristics as a result of an interaction of the dye molecule with cell constituents such as proteins, lipids or nucleic acids. This effect is reflected in calibration curves different from those found with the same dye in pure buffer solutions. To study an interaction of the probe 5′(and 6′)-carboxy-10-dimethylamino-3-hydroxy-spiro[7H-benzo[c]xanthene-7,1′(3H)-isobenzofuran]-3′-one (carboxy SNARF-1) with membrane lipids, we measured its fluorescence in model systems of large unilamellar vesicles (LUV) prepared by extrusion. When the dye was removed from the bulk solution by gel filtration the relative fluorescence intensity of the lipid-bound dye form was enhanced, showing a strong interaction of the dye molecule with LUV membrane lipids. Surprisingly, the dye molecules seem to be bound predominantly to the outer surface of the lipid bilayer. The same situation was found with small unilamellar vesicles prepared by sonication. This effect makes it difficult to use carboxy SNARF-1 for measurements of the internal pH in suspensions of liposomes.
Biochimica et Biophysica Acta | 1997
Jarolav Vecer; Petr Herman; Aleš Holoubek
A novel fluorescent technique for direct assessment of membrane potential was tested on suspensions of large unilamellar vesicles (LUV). The method is based on monitoring shifts in the fluorescence maximum, lambda(max), of the redistribution dye diS-C3(3) caused by dye binding to the LUV membrane. A theory describing the behavior of this dye in LUV suspensions was elaborated and tested. The diffusion potentials across the LUV membrane were adjusted by ion gradients in the absence of valinomycin. When using KCl and choline chloride without valinomycin the potential can be set as high as -70 mV. These potentials exhibited long-term stability and the theory allowed to determine the upper limits of membrane permeabilities for Cl-, choline cations, protons and hydroxyls relative to the K+ permeability. The absolute values of membrane potential set by ion gradients were calibrated using valinomycin. The monitoring of the lambda(max) shift permitted us to show real-time changes in membrane potential, since addition of valinomycin to the LUV was followed by an immediate depolarization. The setting of the potential and the dye re-equilibration after valinomycin addition took place within a second.
Biochimica et Biophysica Acta | 2003
Aleš Holoubek; Jaroslav Večeř; Miroslava Opekarová; K. Sigler
Potential-sensitive fluorescent probes oxonol V and oxonol VI were employed for monitoring membrane potential (Delta(psi)) generated by the Schizosaccharomyces pombe plasma membrane H(+)-ATPase reconstituted into vesicles. Oxonol VI was used for quantitative measurements of the Delta(psi) because its response to membrane potential changes can be easily calibrated, which is not possible with oxonol V. However, oxonol V has a superior sensitivity to Delta(psi) at very low concentration of reconstituted vesicles, and thus it is useful for testing quality of the reconstitution. Oxonol VI was found to be a good emission-ratiometric probe. We have shown that the reconstituted H(+)-ATPase generates Delta(psi) of about 160 mV on the vesicle membrane. The generated Delta(psi) was stable at least over tens of minutes. An influence of the H(+) membrane permeability on the Delta(psi) buildup was demonstrated by manipulating the H(+) permeability with the protonophore CCCP. Ratiometric measurements with oxonol VI thus offer a promising tool for studying processes accompanying the yeast plasma membrane H(+)-ATPase-mediated Delta(psi) buildup.
Biochimica et Biophysica Acta | 2012
Dita Strachotová; Aleš Holoubek; Helena Kučerová; Aleš Benda; Jana Humpolíčková; Libuše Váchová; Zdena Palková
Each of the three plasma membrane Ato proteins is involved in ammonium signalling and the development of yeast colonies. This suggests that although these proteins are homologous, they do not functionally substitute for each other, but may form a functional complex. Here, we present a detailed combined FRET, FLIM and photobleaching study, which enabled us to detect interactions between Ato proteins found in distinct compartments of yeast cells. We thus show that the proteins Ato1p and Ato2p interact and can form complexes when present in the plasma membrane. No interaction was detected between Ato1p and Ato3p or Ato2p and Ato3p. In addition, using specially prepared strains, we were able to detect an interaction between molecules of the same Ato protein, namely Ato1p-Ato1p and Ato3p-Ato3p, but not Ato2p-Ato2p.
Folia Microbiologica | 1999
M. Eminger; Dana Gášková; Barbora Brodská; Aleš Holoubek; N. Stadler; K. Sigler
The rate and extent of uptake of the fluorescent probe diS-C3(3) reporting on membrane potential inS. cerevisiae is affected by the strain under study, cell-growth phase, starvation and by the concentration of glucose both in the growth medium and in the monitored cell suspension under non-growth conditions. Killer toxin K1 brings about changes in membrane potential. In all types of cells tested,viz. in glucose-supplied stationary or exponential cells of the killer-sensitive strain S6/1 or a conventional strain RXII, or in glucose-free exponential cells of both strains, both active and heat-inactivated toxin slow down the potential-dependent uptake of diS-C3(3) into the cells. This may reflect “clogging” of pores in the cell wall that hinders, but does not prevent, probe passage to the plasma membrane and its equilibration. The clogging effect of heat-inactivated toxin is stronger than that exerted by active toxin. In susceptible cells,i.e. in exponential-phase glucose-supplied cells of the sensitive strain S6/1, this phase of probe uptake retardation is followed by an irreversible red shift in probe fluorescence maximumλmax indicating damage to membrane integrity and cell permeabilization. A similar fast red shift inλmax signifying lethal cell damage was found in heat-killed or nystatin-treated cells.
Archive | 1996
Petr Heřman; Jaroslav Večeř; Aleš Holoubek
Fluorescence probe diS-C3(3) (3,3′-dipropylthiacarbocyanine iodide) is a redistribution dye used for the assessment of diffusion membrane potential in living cells. Despite of a wide usage of the dye, detailed mechanisms of its fluorescence response on changes of the membrane potential have not been well documented yet. Studies, where diS-C3(3) was used as an indicator of the membrane potential, involve an implicit assumption that diS-C3(3) is a ‘Nernstian dye’, eg. that the dye redistributes between the extracellular medium and cytoplasm according to a diffusion membrane potential and its equilibrium concentrations inside and outside the cell follow the Nernst equation. Validity of this assumption is critical when diS-C3(3) is used for a quantitative assessment of the membrane potential.
Methods and Applications in Fluorescence | 2018
Aleš Holoubek; Petr Herman; Jan Sýkora; Barbora Brodská; Jana Humpolíčková; Markéta Kráčmarová; Dana Gášková; Martin Hof; Kateřina Kuželová
Oligomerization plays a crucial role in the function of nucleophosmin (NPM), an abundant nucleolar phosphoprotein. Two dual-color methods based on modern fluorescence confocal microscopy are applied for tracking NPM aggregates in live cells: cross-correlation Number and Brightness analysis (ccN&B) combined with pulsed interleaved excitation (PIE) and fluorescence-lifetime imaging microscopy (FLIM) utilizing resonance energy transfer (FRET). HEK-293T cells were transfected with mixture of plasmids designed for tagging with fluorescent proteins so that the cells express mixed population of NPM labeled either with eGFP or mRFP1. We observe joint oligomers formed from the fluorescently labeled NPM. Having validated the in vivo methods, we study an effect of substitutions in cysteine 21 (Cys21) of the NPM N-terminus on the oligomerization to demonstrate applicability of the methods. Inhibitory effect of mutations of the Cys21 to nonpolar Ala or to aromatic Phe on the oligomerization was reported in literature using in vitro semi-native electrophoresis. However, we do not detect any break-up of the joint NPM oligomers due to the Cys21 mutations in live cells. In vivo microscopy observations are supported by an in vitro method, the GFP-Trap immunoprecipitation assay. Our results therefore show importance of utilizing several methods for detection of biologically relevant protein aggregates. In vivo monitoring of the NPM oligomerization, a potential cancer therapy target, by the presented methods offers a new way to monitor effects of drugs that are tested as NPM oligomerization inhibitors directly in live cells.
The International Journal of Biochemistry & Cell Biology | 2018
Markéta Šašinková; Aleš Holoubek; Petra Otevřelová; Kateřina Kuželová; Barbora Brodská
C-terminal mutations of the nucleolar protein nucleophosmin (NPM) are the most frequent genetic aberration detected in acute myeloid leukemia (AML) with normal karyotype. The mutations cause aberrant cytoplasmic localization of NPM and lead to loss of functions associated with NPM nucleolar localization, e.g. in ribosome biogenesis or DNA-damage repair. NPM has many interaction partners and some of them were proved to interact also with the mutated form (NPMmut) and due to this interaction thereby to be withdrawn from their site of action. We analyzed the impact of the mutation on NPM interaction with nucleolin (NCL) which is also prevalently localized into the nucleolus and cooperates with wild-type NPM (NPMwt) in many cellular processes. We revealed that the NCL-NPM complex formation is completely abolished by the mutation and that the presence/absence of the interaction is not affected by drugs causing genotoxic stress or differentiation. Deregulation resulting from changes of NCL/NPMwt ratio may contribute to leukemogenesis.
Cell Adhesion & Migration | 2018
Pavla Röselová; Adam Obr; Aleš Holoubek; Dana Grebeňová; Kateřina Kuželová
ABSTRACT Interaction of leukemia blasts with the bone marrow extracellular matrix often results in protection of leukemia cells from chemotherapy and in persistence of the residual disease which is on the basis of subsequent relapses. The adhesion signaling pathways have been extensively studied in adherent cells as well as in mature haematopoietic cells, but the adhesion structures and signaling in haematopoietic stem and progenitor cells, either normal or malignant, are much less explored. We analyzed the interaction of leukemia cells with fibronectin (FN) using interference reflection microscopy, immunofluorescence, measurement of adherent cell fraction, real-time microimpedance measurement and live cell imaging. We found that leukemia cells form very dynamic adhesion structures similar to early stages of focal adhesions. In contrast to adherent cells, where Src family kinases (SFK) belong to important regulators of focal adhesion dynamics, we observed only minor effects of SFK inhibitor dasatinib on leukemia cell binding to FN. The relatively weak involvement of SFK in adhesion structure regulation might be associated with the lack of cytoskeletal mechanical tension in leukemia cells. On the other hand, active Lyn kinase was found to specifically localize to leukemia cell adhesion structures and a less firm cell attachment to FN was often associated with higher Lyn activity (this unexpectedly occurred also after cell treatment with the inhibitor SKI-1). Lyn thus may be important for signaling from integrin-associated complexes to other processes in leukemia cells.