Ales Obreza
University of Ljubljana
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ales Obreza.
Journal of Chromatography A | 2010
Tanja Vehovec; Ales Obreza
Recently a new detection method, based upon aerosol charging (the charged aerosol detector (CAD)) has been introduced as an alternative to evaporative light-scattering detector (ELSD), chemiluminescent nitrogen detector and refractive index detector for detection of non-ultraviolet and weakly ultraviolet active compounds and for UV-absorbing compounds in the absence of standards. The content of this review article includes description of operation principle, advantages and disadvantages of CAD system, and short reports of selected applications of this detector. The main advantages of CAD detector are unique performance characteristics: better sensitivity than ELSD system, a dynamic range of up to 4 orders of magnitude, ease of use and constancy of response factors. Both detectors are mass dependent and the response generated does not depend on the spectral or physicochemical properties of the analyte. This attractive feature of a detection technique generating universal response factors is the potential use of a single, universal standard for calibration against which all other compounds or impurities can be qualified. CAD also has the same limitation as ELSD, namely, the response is affected by mobile-phase composition. This problem has been resolved by using inverse gradient compensation as is done for high pressure liquid chromatography and supercritical fluid chromatography. CAD has been applied for the analysis of structurally diverse compounds used in the pharmaceutical, chemical, food, and consumer products industries and in life science research. They include nonvolatile and semivolatile neutral, acidic, basic, and zwitterionic compounds, both polar and nonpolar (e.g. lipids, proteins, steroids, polymers, carbohydrates, peptides).
Current Medicinal Chemistry | 2003
Andrej Prezelj; Ales Obreza; Slavko Pečar
Clenbuterol and other beta-agonists are commonly misused as repartitioning agents in meat production and as doping substances to improve athletic performance. Numerous reports on food poisoning throughout Europe prompted the EU regulatory offices and FDA to implement a ban on the use of beta-agonists as growth promoters. Several analytical methods have been developed for detecting illegal administration of these compounds, based mainly on chromatography and immunoassay screening. This article deals with the pharmacological aspect of beta-agonists in growth promotion, control of their abuse and methods of analysis.
Current Medicinal Chemistry | 2004
Ales Obreza; Stanislav Gobec
The replacement of peptide bond is an important segment in the synthesis of peptidomimetics, because this modification may result in the preparation of biologically active analogues with improved properties, especially regarding bioavailability and metabolical stability. The introduction of sulfonamide group increases polarity of a molecule and the hydrogen-bond donor properties as a sulfonamide N-H is more acidic (pKa=11-12) than carboxamide. Furthermore, due to geometry of sulfur atom the sulfonamido bond shows structural similarity to the tetrahedral transition state present as an intermediate in the enzymatic hydrolysis of an amide bond thus making these compounds candidates in the development of new drugs. Recent advances in the synthesis of building blocks for sulfonamidopeptides, such as alpha or beta- substituted aminoalkylsulfonates and efficient methods for the formation of sulfonamide bond have enabled the preparation of large number of oligomers with potential applications on various fields. These methods have been applied for the synthesis of oligopeptidosulfonamides, catalysts, receptor molecules and enzyme inhibitors. This article deals with physicochemical properties of sulfonamides, synthesis of aminoalkylsulfonates and sulfonamidopeptides, and the biological activity of these compounds.
Molecules | 2008
Rok Frlan; Andreja Kovač; Didier Blanot; Stanislav Gobec; Slavko Pečar; Ales Obreza
A series of novel N-benzylidenesulfonohydrazide compounds were designed and synthesized as inhibitors of UDP-N-acetylmuramic acid:L-alanine ligase (MurC) and UDP-N-acetylmuramoyl-L-alanine:D-glutamate ligase (MurD) from E. coli, involved in the biosynthesis of bacterial cell-walls. Some compounds possessed inhibitory activity against both enzymes with IC50 values as low as 30 μM. In addition, a new, one-pot synthesis of amidobenzaldehydes is reported.
Angewandte Chemie | 2016
Izidor Sosič; Martina Gobec; Boris Brus; Damijan Knez; Matej Živec; Janez Konc; Samo Lešnik; Mitja Ogrizek; Ales Obreza; Dušan Žigon; Dušanka Janežič; Irena Mlinarič-Raščan; Stanislav Gobec
Elevated expression of the immunoproteasome has been associated with autoimmune diseases, inflammatory diseases, and various types of cancer. Selective inhibitors of the immunoproteasome are not only scarce, but also almost entirely restricted to peptide-based compounds. Herein, we describe nonpeptidic reversible inhibitors that selectively block the chymotrypsin-like (β5i) subunit of the human immunoproteasome in the low micromolar range. The most potent of the reversibly acting compounds were then converted into covalent, irreversible, nonpeptidic inhibitors that retained selectivity for the β5i subunit. In addition, these inhibitors discriminate between the immunoproteasome and the constitutive proteasome in cell-based assays. Along with their lack of cytotoxicity, these data point to these nonpeptidic compounds being suitable for further investigation as β5i-selective probes for possible application in noncancer diseases related to the immunoproteasome.
Synthetic Communications | 2003
Ales Obreza; Uroš Urleb
Abstract Reaction of tert-butyl 1-hydrazinecarboxylate with triphosgene and ethyl 2-pyrrolidinecarboxylate or related compounds, followed by the removal of the Boc-protecting group with gaseous hydrogen chloride in anhydrous acetic acid, yields hexahydropyrrolo [1,2-d][1,2,4]triazine-1,4-dione and related heterocycles.
Aaps Pharmscitech | 2010
Mirjam Gosenca; Ales Obreza; Slavko Pečar; Mirjana Gašperlin
The aim of this work was to test innovative approach for enhancing ascorbyl palmitate stability in microemulsions for topical application by addition of newly synthesized co-antioxidant 4-(tridecyloxy)benzaldehyde oxime (TDBO) and to investigate its antioxidant activity and finally to evaluate cytotoxicity of TDBO-loaded microemulsions on keratinocyte cells. TDBO significantly increased ascorbyl palmitate stability in oil-dispersed-in-water (o/w) microemulsions, most presumably due to reduction of ascorbyl palmitate radical back to ascorbyl palmitate, since TDBO free-radical scavenging activity was confirmed. Cytotoxicity experiments demonstrated no significant change in cell viability or morphology in the presence of TDBO-loaded microemulsions regarding unloaded microemulsions, although greater cytotoxicity was observed with increased microemulsion concentrations. Therefore, the incorporation of TDBO as non-cytotoxic co-antioxidant in o/w microemulsions is a promising new strategy for enhancing ascorbyl palmitate stability that could be used to support antioxidant network in the skin.
PLOS ONE | 2012
Martina Gobec; Ales Obreza; Matevz Prijatelj; Boris Brus; Stanislav Gobec; Irena Mlinarič-Raščan
Serine proteases have proven to be promising pharmacological targets in contemporary drug discovery for cancer treatment. Since azaphenylalanine-based compounds manifest cytotoxic activity, we have selected serine protease inhibitors designed and synthesized in-house with large hydrophobic naphthalene moiety for screening. The cytotoxic potential of screened molecules was correlated to modifications of R1 residues. The most cytotoxic were compounds with greater basicity; amidinopiperidines, piperidines and benzamidines. Amidinopiperidine-based compounds exert cytotoxicity in low µM range, with IC50 18 µM and 22 µM for inhibitors 15 and 16 respectively. These compounds exhibited selective cytotoxicity towards the Burkitt’s lymphoma cells Ramos and Daudi, and proved nontoxic to PMBC, Jurkat and U937. They induce caspase-dependent apoptotic cell death, as demonstrated by the use of a pan-caspase inihibitor, zVADfmk, which was able to rescue Ramos cells from compound(s)-induced apoptosis. We confirm a disruption of the pro-survival pathway in Burkitt’s lymphoma through NFκB inhibition. The accumulation of phosphorylated precursor (p105) and inhibitory (IκB) molecules with no subsequent release of active NFκB implicated the involvement of proteasome. Indeed, we show that the amidinopiperidine-based compounds inhibit all three proteolytical activities of the human 20S proteasome, with the most prominent effect being on the trypsin-like activity. Consistently, treatment of Ramos cells with these compounds led to an increase in ubiquitinated proteins. The amidinopiperidine-based serine protease inhibitors presented are, as selective inducers of apoptosis in Burkitt’s lymphoma cells, promising leads for the development of novel chemotherapeutics.
European Journal of Pharmacology | 2009
Teja Celhar; Tina Batista Napotnik; Ales Obreza; Anamarija Zega; Petra Stefanic Anderluh; Danijel Kikelj; Irena Mlinarič-Raščan
Molecules regulating cell death constitute prominent therapeutic targets. The pro-apoptotic role of serine protease inhibitors prompted us to search for novel modulators of this process. We have tested some recently synthesized antithrombotic compounds for their potential to induce apoptotic cell death. Cell based analyses revealed that inhibitors built on the azaphenylalanine scaffold are, for B-cell lymphoma cells, severely cytotoxic, while other compounds tested were moderate or non-cytotoxic. These inhibitors induced the time and concentration dependent biochemical and morphological characteristics of apoptosis, such as DEVDase activation, loss of mitochondrial membrane potential, nuclear degradation and genomic DNA fragmentation. Most of the inhibitors proved to be selective for thrombin, with inhibition constants (K(i)) in the nanomolar range. However, they could also inhibit at least one additional serine protease (trypsin, chymotrypsin and/or coagulation factor X) with K(i) values in the nanomolar or low micromolar range. These serine protease inhibitors constitute novel apoptosis inducing compounds in B-cell lymphoma cells.
Thrombosis and Haemostasis | 2006
Luka Peternel; Mateja Štempelj; Manica Cerne; Anamarija Zega; Ales Obreza; Marko Oblak; Gorazd Drevenšek; Metka V. Budihna; Lovro Stanovnik; Uroš Urleb
The main structural feature of direct thrombin inhibitor LK-732 responsible for the appropriate interaction at the thrombin active site is a strong basic group. A possibility that a strong basic group of LK-732 might contribute to the mast cell degranulation effect and consequent reduction of tracheal air flow (TAF) and fall of mean arterial blood pressure (MAP) in rats was investigated in the present study. At doses up to 5 mg/kg (i.v.), LK-732 did not cause significant changes of TAF and MAP. At 7 mg/kg (i.v.), a sudden reduction of TAF and a fall of MAP was observed within 5 min after LK-732 administration (75% mortality, p = 0.007). A less basic direct thrombin inhibitor LK-658 (21 mg/kg, i.v.) did not significantly disturb TAF and MAP. A reduction of TAF and a fall of MAP caused by LK-732 (7 mg/kg, i.v.) was almost completely abolished in rats with degranulated mast cells (0% mortality, p = 0.008). LK-732 concentration-dependently degranulated rat peritoneal mast cells in vitro (pEC(50) = 1.92 +/- 0.05 muM). A structure-activity relationship (SAR) study revealed that the terminal basic groups attached to the aromatic ring are responsible for the mast cell degranulation effect. A good correlation was observed between mast cell degranulation and pK(b) of analogues of LK-732 (R(2) = 0.49), but not between mast cell degranulation and thrombin K(i) (R(2) = 0.23). LK-732-induced reduction of TAF, the fall of MAP and high mortality originate from LK-732-induced mast cell degranulation. As judged by the SAR study, this effect could be overcome by reducing the basicity of LK-732.