Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alessandra Breschi is active.

Publication


Featured researches published by Alessandra Breschi.


Science | 2014

Transcriptional diversity during lineage commitment of human blood progenitors

Lu Chen; Myrto Kostadima; Joost H.A. Martens; Giovanni Canu; Sara P. Garcia; Ernest Turro; Kate Downes; Iain C. Macaulay; Ewa Bielczyk-Maczyńska; Sophia Coe; Samantha Farrow; Pawan Poudel; Frances Burden; Sjoert B. G. Jansen; William Astle; Antony P. Attwood; Tadbir K. Bariana; Bernard de Bono; Alessandra Breschi; John Chambers; Fizzah Choudry; Laura Clarke; Paul Coupland; Martijn van der Ent; Wendy N. Erber; Joop H. Jansen; Rémi Favier; Matthew Fenech; Nicola S. Foad; Kathleen Freson

Introduction Blood production in humans culminates in the daily release of around 1011 cells into the circulation, mainly platelets and red blood cells. All blood cells originate from a minute population of hematopoietic stem cells (HSCs) that expands and differentiates into progenitor cells with increasingly restricted lineage choice. Characterizing alternative splicing events involved in hematopoiesis is critical for interpreting the effects of mutations leading to inherited disorders and blood cancers and for the rational design of strategies to advance transplantation and regenerative medicine. Overview of methodology. RNA-sequencing reads from human blood progenitors [opaque cells in (A)] were mapped to the transcriptome to quantify gene and transcript expression. Reads were also mapped to the genome to identify novel splice junctions and characterize alternative splicing events (B). Rationale To address this, we explored the transcriptional diversity of human blood progenitors by sequencing RNA from six progenitor and two precursor populations representing the classical myeloid commitment stages of hematopoiesis and the main lymphoid stage. Data were aligned to the human reference transcriptome and genome to quantify known transcript isoforms and to identify novel splicing events, respectively. We used Bayesian polytomous model selection to classify transcripts into distinct expression patterns across the three cell types that comprise each differentiation step. Results We identified extensive transcriptional changes involving 6711 genes and 10,724 transcripts and validated a number of these. Many of the changes at the transcript isoform level did not result in significant changes at the gene expression level. Moreover, we identified transcripts unique to each of the progenitor populations, observing enrichment in non–protein-coding elements at the early stages of differentiation. We discovered 7881 novel splice junctions and 2301 differentially used alternative splicing events, enriched in genes involved in regulatory processes and often resulting in the gain or loss of functional domains. Of the alternative splice sites displaying differential usage, 73% resulted in exon-skipping events involving at least one protein domain (38.5%) or introducing a premature stop codon (26%). Enrichment analysis of RNA-binding motifs provided insights into the regulation of cell type–specific splicing events. To demonstrate the importance of specific isoforms in driving lineage fating events, we investigated the role of a transcription factor highlighted by our analyses. Our data show that nuclear factor I/B (NFIB) is highly expressed in megakaryocytes and that it is transcribed from an unannotated transcription start site preceding a novel exon. The novel NFIB isoform lacks the DNA binding/dimerization domain and therefore is unable to interact with its binding partner, NFIC. We further show that NFIB and NFIC are important in megakaryocyte differentiation. Conclusion We produced a quantitative catalog of transcriptional changes and splicing events representing the early progenitors of human blood. Our analyses unveil a previously undetected layer of regulation affecting cell fating, which involves transcriptional isoforms switching without noticeable changes at the gene level and resulting in the gain or loss of protein functions. A BLUEPRINT of immune cell development To determine the epigenetic mechanisms that direct blood cells to develop into the many components of our immune system, the BLUEPRINT consortium examined the regulation of DNA and RNA transcription to dissect the molecular traits that govern blood cell differentiation. By inducing immune responses, Saeed et al. document the epigenetic changes in the genome that underlie immune cell differentiation. Cheng et al. demonstrate that trained monocytes are highly dependent on the breakdown of sugars in the presence of oxygen, which allows cells to produce the energy needed to mount an immune response. Chen et al. examine RNA transcripts and find that specific cell lineages use RNA transcripts of different length and composition (isoforms) to form proteins. Together, the studies reveal how epigenetic effects can drive the development of blood cells involved in the immune system. Science, this issue 10.1126/science.1251086, 10.1126/science.1250684, 10.1126/science.1251033 RNA sequencing identifies how different cell fate decisions are made during blood cell differentiation. Blood cells derive from hematopoietic stem cells through stepwise fating events. To characterize gene expression programs driving lineage choice, we sequenced RNA from eight primary human hematopoietic progenitor populations representing the major myeloid commitment stages and the main lymphoid stage. We identified extensive cell type–specific expression changes: 6711 genes and 10,724 transcripts, enriched in non–protein-coding elements at early stages of differentiation. In addition, we found 7881 novel splice junctions and 2301 differentially used alternative splicing events, enriched in genes involved in regulatory processes. We demonstrated experimentally cell-specific isoform usage, identifying nuclear factor I/B (NFIB) as a regulator of megakaryocyte maturation—the platelet precursor. Our data highlight the complexity of fating events in closely related progenitor populations, the understanding of which is essential for the advancement of transplantation and regenerative medicine.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Comparison of the transcriptional landscapes between human and mouse tissues

Shin Lin; Yiing Lin; Joseph R. Nery; Mark A. Urich; Alessandra Breschi; Carrie A. Davis; Alexander Dobin; Christopher Zaleski; Michael Beer; William C. Chapman; Thomas R. Gingeras; Joseph R. Ecker; Michael Snyder

Significance To date, various studies have found similarities between humans and mice on a molecular level, and indeed, the murine model serves as an important experimental system for biomedical science. In this study of a broad number of tissues between humans and mice, high-throughput sequencing assays on the transcriptome and epigenome reveal that, in general, differences dominate similarities between the two species. These findings provide the basis for understanding the differences in phenotypes and responses to conditions in humans and mice. Although the similarities between humans and mice are typically highlighted, morphologically and genetically, there are many differences. To better understand these two species on a molecular level, we performed a comparison of the expression profiles of 15 tissues by deep RNA sequencing and examined the similarities and differences in the transcriptome for both protein-coding and -noncoding transcripts. Although commonalities are evident in the expression of tissue-specific genes between the two species, the expression for many sets of genes was found to be more similar in different tissues within the same species than between species. These findings were further corroborated by associated epigenetic histone mark analyses. We also find that many noncoding transcripts are expressed at a low level and are not detectable at appreciable levels across individuals. Moreover, the majority lack obvious sequence homologs between species, even when we restrict our attention to those which are most highly reproducible across biological replicates. Overall, our results indicate that there is considerable RNA expression diversity between humans and mice, well beyond what was described previously, likely reflecting the fundamental physiological differences between these two organisms.


Nature Communications | 2015

Enhanced transcriptome maps from multiple mouse tissues reveal evolutionary constraint in gene expression

Dmitri D. Pervouchine; Sarah Djebali; Alessandra Breschi; Carrie A. Davis; Pablo Prieto Barja; Alexander Dobin; Andrea Tanzer; Julien Lagarde; Chris Zaleski; Lei Hoon See; Meagan Fastuca; Jorg Drenkow; Huaien Wang; Giovanni Bussotti; Baikang Pei; Suganthi Balasubramanian; Jean Monlong; Arif Harmanci; Mark Gerstein; Michael Beer; Cedric Notredame; Roderic Guigó; Thomas R. Gingeras

Mice have been a long-standing model for human biology and disease. Here we characterize, by RNA sequencing, the transcriptional profiles of a large and heterogeneous collection of mouse tissues, augmenting the mouse transcriptome with thousands of novel transcript candidates. Comparison with transcriptome profiles in human cell lines reveals substantial conservation of transcriptional programmes, and uncovers a distinct class of genes with levels of expression that have been constrained early in vertebrate evolution. This core set of genes captures a substantial fraction of the transcriptional output of mammalian cells, and participates in basic functional and structural housekeeping processes common to all cell types. Perturbation of these constrained genes is associated with significant phenotypes including embryonic lethality and cancer. Evolutionary constraint in gene expression levels is not reflected in the conservation of the genomic sequences, but is associated with conserved epigenetic marking, as well as with characteristic post-transcriptional regulatory programme, in which sub-cellular localization and alternative splicing play comparatively large roles.


Nature Reviews Genetics | 2017

Comparative transcriptomics in human and mouse

Alessandra Breschi; Thomas R. Gingeras; Roderic Guigó

Cross-species comparisons of genomes, transcriptomes and gene regulation are now feasible at unprecedented resolution and throughput, enabling the comparison of human and mouse biology at the molecular level. Insights have been gained into the degree of conservation between human and mouse at the level of not only gene expression but also epigenetics and inter-individual variation. However, a number of limitations exist, including incomplete transcriptome characterization and difficulties in identifying orthologous phenotypes and cell types, which are beginning to be addressed by emerging technologies. Ultimately, these comparisons will help to identify the conditions under which the mouse is a suitable model of human physiology and disease, and optimize the use of animal models.


Genome Biology | 2016

Gene-specific patterns of expression variation across organs and species.

Alessandra Breschi; Sarah Djebali; Jesse Gillis; Dmitri D. Pervouchine; Alexander Dobin; Carrie A. Davis; Thomas R. Gingeras; Roderic Guigó

BackgroundA comparison of transcriptional profiles derived from different tissues in a given species or among different species assumes that commonalities reflect evolutionarily conserved programs and that differences reflect species or tissue responses to environmental conditions or developmental program staging. Apparently conflicting results have been published regarding whether organ-specific transcriptional patterns dominate over species-specific patterns, or vice versa, making it unclear to what extent the biology of a given organism can be extrapolated to another. These studies have in common that they treat the transcriptomes monolithically, implicitly ignoring that each gene is likely to have a specific pattern of transcriptional variation across organs and species.ResultsWe use linear models to quantify this pattern. We find a continuum in the spectrum of expression variation: the expression of some genes varies considerably across species and little across organs, and simply reflects evolutionary distance. At the other extreme are genes whose expression varies considerably across organs and little across species; these genes are much more likely to be associated with diseases than are genes whose expression varies predominantly across species.ConclusionsWhether transcriptomes, when considered globally, cluster preferentially according to one component or the other may not be a property of the transcriptomes, but rather a consequence of the dominant behavior of a subset of genes. Therefore, the values of the components of the variance of expression for each gene could become a useful resource when planning, interpreting, and extrapolating experimental data from mouse to humans.


Nature Communications | 2018

The effects of death and post-mortem cold ischemia on human tissue transcriptomes

Pedro Ferreira; Manuel Muñoz-Aguirre; Ferran Reverter; Caio P. Sá Godinho; Abel Sousa; Alicia Amadoz; Reza Sodaei; Marta R. Hidalgo; Dmitri D. Pervouchine; Ramil Nurtdinov; Alessandra Breschi; Raziel Amador; Patrícia Oliveira; Cankut Cubuk; Joao Curado; François Aguet; Carla Oliveira; Joaquín Dopazo; Michael Sammeth; Kristin Ardlie; Roderic Guigó

Post-mortem tissues samples are a key resource for investigating patterns of gene expression. However, the processes triggered by death and the post-mortem interval (PMI) can significantly alter physiologically normal RNA levels. We investigate the impact of PMI on gene expression using data from multiple tissues of post-mortem donors obtained from the GTEx project. We find that many genes change expression over relatively short PMIs in a tissue-specific manner, but this potentially confounding effect in a biological analysis can be minimized by taking into account appropriate covariates. By comparing ante- and post-mortem blood samples, we identify the cascade of transcriptional events triggered by death of the organism. These events do not appear to simply reflect stochastic variation resulting from mRNA degradation, but active and ongoing regulation of transcription. Finally, we develop a model to predict the time since death from the analysis of the transcriptome of a few readily accessible tissues.RNA levels in post-mortem tissue can differ greatly from those before death. Studying the effect of post-mortem interval on the transcriptome in 36 human tissues, Ferreira et al. find that the response to death is largely tissue-specific and develop a model to predict time since death based on RNA data.


PLOS Biology | 2018

Glucotypes reveal new patterns of glucose dysregulation

Heather Hall; Dalia Perelman; Alessandra Breschi; Patricia Limcaoco; Ryan A. Kellogg; Tracey McLaughlin; Michael Snyder

Diabetes is an increasing problem worldwide; almost 30 million people, nearly 10% of the population, in the United States are diagnosed with diabetes. Another 84 million are prediabetic, and without intervention, up to 70% of these individuals may progress to type 2 diabetes. Current methods for quantifying blood glucose dysregulation in diabetes and prediabetes are limited by reliance on single-time-point measurements or on average measures of overall glycemia and neglect glucose dynamics. We have used continuous glucose monitoring (CGM) to evaluate the frequency with which individuals demonstrate elevations in postprandial glucose, the types of patterns, and how patterns vary between individuals given an identical nutrient challenge. Measurement of insulin resistance and secretion highlights the fact that the physiology underlying dysglycemia is highly variable between individuals. We developed an analytical framework that can group individuals according to specific patterns of glycemic responses called “glucotypes” that reveal heterogeneity, or subphenotypes, within traditional diagnostic categories of glucose regulation. Importantly, we found that even individuals considered normoglycemic by standard measures exhibit high glucose variability using CGM, with glucose levels reaching prediabetic and diabetic ranges 15% and 2% of the time, respectively. We thus show that glucose dysregulation, as characterized by CGM, is more prevalent and heterogeneous than previously thought and can affect individuals considered normoglycemic by standard measures, and specific patterns of glycemic responses reflect variable underlying physiology. The interindividual variability in glycemic responses to standardized meals also highlights the personal nature of glucose regulation. Through extensive phenotyping, we developed a model for identifying potential mechanisms of personal glucose dysregulation and built a webtool for visualizing a user-uploaded CGM profile and classifying individualized glucose patterns into glucotypes.


bioRxiv | 2017

Comparative analysis of neutrophil and monocyte epigenomes

Daniel Rico; Joost H.A. Martens; Kate Downes; Enrique Carrillo-de-Santa-Pau; Vera Pancaldi; Alessandra Breschi; David C. Richardson; Simon Heath; Sadia Saeed; Mattia Frontini; Lu Chen; Stephen Watt; Fabian Müller; Laura Clarke; Hindrik Hd Kerstens; Steven P. Wilder; Emilio Palumbo; Sarah Djebali; Emanuele Rainieri; Angelika Merkel; Anna Esteve-Codina; Marc Sultan; Alena van Bommel; Marta Gut; Marie-Laure Yaspo; Miriam Rubio; Jose Maria Fernandez; Anthony Attwood; Victor de la Torre; Romina Royo

Neutrophils and monocytes provide a first line of defense against infections as part of the innate immune system. Here we report the integrated analysis of transcriptomic and epigenetic landscapes for circulating monocytes and neutrophils with the aim to enable downstream interpretation and functional validation of key regulatory elements in health and disease. We collected RNA-seq data, ChIP-seq of six histone modifications and of DNA methylation by bisulfite sequencing at base pair resolution from up to 6 individuals per cell type. Chromatin segmentation analyses suggested that monocytes have a higher number of cell-specific enhancer regions (4-fold) compared to neutrophils. This highly plastic epigenome is likely indicative of the greater differentiation potential of monocytes into macrophages, dendritic cells and osteoclasts. In contrast, most of the neutrophil-specific features tend to be characterized by repressed chromatin, reflective of their status as terminally differentiated cells. Enhancers were the regions where most of differences in DNA methylation between cells were observed, with monocyte-specific enhancers being generally hypomethylated. Monocytes show a substantially higher gene expression levels than neutrophils, in line with epigenomic analysis revealing that gene more active elements in monocytes. Our analyses suggest that the overexpression of c-Myc in monocytes and its binding to monocyte-specific enhancers could be an important contributor to these differences. Altogether, our study provides a comprehensive epigenetic chart of chromatin states in primary human neutrophils and monocytes, thus providing a valuable resource for studying the regulation of the human innate immune system.


bioRxiv | 2014

Enhanced Transcriptome Maps from Multiple Mouse Tissues Reveal Evolutionary Constraint in Gene Expression for Thousands of Genes

Dmitri D. Pervouchine; Sarah Djebali; Alessandra Breschi; Carrie A. Davis; Pablo Prieto Barja; Alexander Dobin; Andrea Tanzer; Julien Lagarde; Chris Zaleski; Lei-Hoon See; Meagan Fastuca; Jorg Drenkow; Huaien Wang; Giovanni Bussotti; Baikang Pei; Suganthi Balasubramanian; Jean Monlong; Arif Harmanci; Mark Gerstein; Michael Beer; Cedric Notredame; Roderic Guigó; Thomas R. Gingeras

We characterized by RNA-seq the transcriptional profiles of a large and heterogeneous collection of mouse tissues, augmenting the mouse transcriptome with thousands of novel transcript candidates. Comparison with transcriptome profiles obtained in human cell lines reveals substantial conservation of transcriptional programs, and uncovers a distinct class of genes with levels of expression across cell types and species, that have been constrained early in vertebrate evolution. This core set of genes capture a substantial and constant fraction of the transcriptional output of mammalian cells, and participates in basic functional and structural housekeeping processes common to all cell types. Perturbation of these constrained genes is associated with significant phenotypes including embryonic lethality and cancer. Evolutionary constraint in gene expression levels is not reflected in the conservation of the genomic sequences, but is associated with strong and conserved epigenetic marking, as well as to a characteristic post-transcriptional regulatory program in which sub-cellular localization and alternative splicing play comparatively large roles.


PLOS Computational Biology | 2018

ggsashimi: Sashimi plot revised for browser- and annotation-independent splicing visualization.

Diego Garrido-Martín; Emilio Palumbo; Roderic Guigó; Alessandra Breschi

We present ggsashimi, a command-line tool for the visualization of splicing events across multiple samples. Given a specified genomic region, ggsashimi creates sashimi plots for individual RNA-seq experiments as well as aggregated plots for groups of experiments, a feature unique to this software. Compared to the existing versions of programs generating sashimi plots, it uses popular bioinformatics file formats, it is annotation-independent, and allows the visualization of splicing events even for large genomic regions by scaling down the genomic segments between splice sites. ggsashimi is freely available at https://github.com/guigolab/ggsashimi. It is implemented in python, and internally generates R code for plotting.

Collaboration


Dive into the Alessandra Breschi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas R. Gingeras

Cold Spring Harbor Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexander Dobin

Cold Spring Harbor Laboratory

View shared research outputs
Top Co-Authors

Avatar

Carrie A. Davis

Cold Spring Harbor Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Beer

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Joost H.A. Martens

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Giovanni Bussotti

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Kate Downes

University of Cambridge

View shared research outputs
Researchain Logo
Decentralizing Knowledge