Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alessandra Failli is active.

Publication


Featured researches published by Alessandra Failli.


PLOS ONE | 2013

Comparison Study of MS-HRM and Pyrosequencing Techniques for Quantification of APC and CDKN2A Gene Methylation

Francesca Migheli; Andrea Stoccoro; Fabio Coppedè; Wan Adnan Wan Omar; Alessandra Failli; Rita Consolini; Massimo Seccia; Roberto Spisni; Paolo Miccoli; John C. Mathers; Lucia Migliore

There is increasing interest in the development of cost-effective techniques for the quantification of DNA methylation biomarkers. We analyzed 90 samples of surgically resected colorectal cancer tissues for APC and CDKN2A promoter methylation using methylation sensitive-high resolution melting (MS-HRM) and pyrosequencing. MS-HRM is a less expensive technique compared with pyrosequencing but is usually more limited because it gives a range of methylation estimates rather than a single value. Here, we developed a method for deriving single estimates, rather than a range, of methylation using MS-HRM and compared the values obtained in this way with those obtained using the gold standard quantitative method of pyrosequencing. We derived an interpolation curve using standards of known methylated/unmethylated ratio (0%, 12.5%, 25%, 50%, 75%, and 100% of methylation) to obtain the best estimate of the extent of methylation for each of our samples. We observed similar profiles of methylation and a high correlation coefficient between the two techniques. Overall, our new approach allows MS-HRM to be used as a quantitative assay which provides results which are comparable with those obtained by pyrosequencing.


International Immunology | 2012

Enumeration of human peripheral blood dendritic cells throughout the life

Giulia Orsini; Annalisa Legitimo; Alessandra Failli; Francesco Massei; Pascal Biver; Rita Consolini

Human aging is associated with immunosenescence, a process characterized by alterations in numerical and functional features of immune system components. Dendritic cells (DCs) are the main antigen-presenting cells, playing a pivotal role in adaptive and innate immunity. Therefore, we investigated the distribution of human circulating DCs throughout the life, in order to contribute to the knowledge of the physiological background underlying the aging of immune system. Cytofluorimetric analysis of peripheral blood samples by all-aged healthy population showed a significant decrease of circulating DCs and of their two main subsets among age. This reduction was limited to the plasmacytoid cell subtype when young and old subjects were analyzed separately. The analysis of circulating Treg cell number in a cohort of the subjects showed a significant reduction with increasing age and a positive significant correlation to myeloid or plasmacytoid absolute numbers. In conclusion, this work provides a large set of data of normal reference values of peripheral blood dendritic cells in healthy population suitable for comparative clinical studies concerning pathological immune dysfunctions.


Epigenetics | 2014

Gene promoter methylation in colorectal cancer and healthy adjacent mucosa specimens: Correlation with physiological and pathological characteristics, and with biomarkers of one-carbon metabolism

Fabio Coppedè; Francesca Migheli; Angela Lopomo; Alessandra Failli; Annalisa Legitimo; Rita Consolini; Gabriella Fontanini; Elisa Sensi; Adele Servadio; Massimo Seccia; Giuseppe Zocco; Massimo Chiarugi; Roberto Spisni; Lucia Migliore

We evaluated the promoter methylation levels of the APC, MGMT, hMLH1, RASSF1A and CDKN2A genes in 107 colorectal cancer (CRC) samples and 80 healthy adjacent tissues. We searched for correlation with both physical and pathological features, polymorphisms of folate metabolism pathway genes (MTHFR, MTRR, MTR, RFC1, TYMS, and DNMT3B), and data on circulating folate, vitamin B12 and homocysteine, which were available in a subgroup of the CRC patients. An increased number of methylated samples were found in CRC respect to adjacent healthy tissues, with the exception of APC, which was also frequently methylated in healthy colonic mucosa. Statistically significant associations were found between RASSF1A promoter methylation and tumor stage, and between hMLH1 promoter methylation and tumor location. Increasing age positively correlated with both hMLH1 and MGMT methylation levels in CRC tissues, and with APC methylation levels in the adjacent healthy mucosa. Concerning gender, females showed higher hMLH1 promoter methylation levels with respect to males. In CRC samples, the MTR 2756AG genotype correlated with higher methylation levels of RASSF1A, and the TYMS 1494 6bp ins/del polymorphism correlated with the methylation levels of both APC and hMLH1. In adjacent healthy tissues, MTR 2756AG and TYMS 1494 6bp del/del genotypes correlated with APC and MGMT promoter methylation, respectively. Low folate levels were associated with hMLH1 hypermethylation. Present results support the hypothesis that DNA methylation in CRC depends from both physiological and environmental factors, with one-carbon metabolism largely involved in this process.


International Journal of Molecular Sciences | 2013

Defective Generation and Maturation of Dendritic Cells from Monocytes in Colorectal Cancer Patients during the Course of Disease

Giulia Orsini; Annalisa Legitimo; Alessandra Failli; Paola Ferrari; Andrea Nicolini; Roberto Spisni; Paolo Miccoli; Rita Consolini

Colorectal cancer (CRC) is the second-leading cause of cancer-related deaths in Western countries. Today, the role of the host’s immune system in controlling the progression and spread of solid tumors is broadly established. Tumor immunosurveillance escape mechanisms, such as those involving dendritic cells (DCs), the most important antigen-presenting cells, are likewise recognized processes involved in cancer. The present study evaluates the ability of CRC patients to generate DCs in vitro from circulating monocytes at both pre- and post-operative timepoints; the results are correlated with the stage of disease to shed light on the systemic immune statuses of CRC patients. Our data showed that patients’ DCs had lower co-stimulatory molecule expression and were less able to present antigens to allogeneic T cells compared to healthy controls’ (HC) DCs. Furthermore altered cytokine secretion, such as increased IL-10 and reduced IL-12 and TNF-α, was observed. At the post-operative timepoints we observed a recovery of the patients’ ability to generate immature DCs, compared to HCs, but the maturational capacity remained affected. Our study conclusively highlights the persistently impaired in vitro generation of fully mature and functional DCs, which appears to be more altered during advanced stages. This work sheds light on a dendritic cell-based tumor immune escape mechanism that could be useful for the development of more effective immunotherapeutic strategies.


Tumori | 2009

The challenge of culturing human colorectal tumor cells: establishment of a cell culture model by the comparison of different methodological approaches

Alessandra Failli; Rita Consolini; Annalisa Legitimo; Roberto Spisni; Maura Castagna; Antonella Romanini; Gaetano Crimaldi; Paolo Miccoli

Background Because colorectal cancer is a significant cause of morbidity and mortality in the Western population, knowledge of the molecular and biological alterations associated with its development is important. Since primary human colon cancer cultures from fresh tumor tissue are technically difficult to obtain, experiments in most laboratories are performed on colon epithelial cell lines, but these represent just one stage of tumor progression. Only primary cultures of neoplastic colonocytes may reflect the actual responsiveness of tumors at certain developmental stages to antitumor agents. Methods This paper analyzes several critical points concerning primary cultures, ranging from cell isolation to culture conditions, and compares different methodological approaches to isolate and cultivate a pure fraction of viable tumor cells. Samples of resected colorectal cancers were collected from 20 patients (stage T3 or T4). We compared in vitro several approaches of tissue disaggregation including mechanical disaggregation and enzymatic dissociation with trypsin or collagenase. Isolated cells were maintained in a short-term serum-free culture system. Evaluation of the purity and tumoral nature of isolated cells was performed by immunochemistry. Results We established the antibiotic concentration necessary during transport and washing of the specimens to prevent microbial overgrowth. We demonstrated that the number of viable cells was dependent on the dissociation method used. Mechanical disaggregation is not a valid dissociation method because of the high mortality of cells and might be used only in samples for molecular analysis. Comparison of the enzymatic digestion procedures showed that digestion with trypsin allowed the highest recovery of viable cells. Conclusion In this paper we analyzed several critical aspects of cell culture procedures and designed a methodological approach suitable for functional studies of colorectal cancer.


Human Vaccines & Immunotherapeutics | 2014

Dendritic cell defects in the colorectal cancer

Annalisa Legitimo; Rita Consolini; Alessandra Failli; Giulia Orsini; Roberto Spisni

Colorectal cancer (CRC) results from the accumulation of both genetic and epigenetic alterations of the genome. However, also the formation of an inflammatory milieu plays a pivotal role in tumor development and progression. Dendritic cells (DCs) play a relevant role in tumor by exerting differential pro-tumorigenic and anti-tumorigenic functions, depending on the local milieu. Quantitative and functional impairments of DCs have been widely observed in several types of cancer, including CRC, representing a tumor-escape mechanism employed by cancer cells to elude host immunosurveillance. Understanding the interactions between DCs and tumors is important for comprehending the mechanisms of tumor immune surveillance and escape, and provides novel approaches to therapy of cancer. This review summarizes updated information on the role of the DCs in colon cancer development and/or progression.


Cancer Letters | 2013

Numerical defect of circulating dendritic cell subsets and defective dendritic cell generation from monocytes of patients with advanced melanoma.

Alessandra Failli; Annalisa Legitimo; Giulia Orsini; Antonella Romanini; Rita Consolini

The behaviour of circulating dendritic cells (DCs) and DC generation from monocytes in melanoma patients during the progression of disease have not been described. We report a significant decrease in the absolute number of total DCs, which mainly affects plasmacytoid DCs in stage IV. Additionally, monocyte-DC generation is less efficient in advanced stages, resulting in DCs that exhibit increased phagocytic capacity, potentially indicating a less mature state. These findings elucidate aspects of basic tumour-mediated immunosuppression, which may have implications for immunotherapeutic approaches, suggesting that the selection of patients for immunotherapy should also be made on the basis of their immune status.


Experimental Biology and Medicine | 2011

Zoledronic acid modulates maturation of human monocyte-derived dendritic cells:

Giulia Orsini; Alessandra Failli; Annalisa Legitimo; Barbara Adinolfi; Antonella Romanini; Rita Consolini

Zoledronic acid (ZA) is a drug of the bisphosphonate class, which is widely used for the treatment of both osteoporosis and skeletal metastasis. Besides its main bone antiresorptive activity, ZA displays antitumor properties, by triggering the expansion and activation of γδ T-cells, which exert an antitumor effect through dendritic cells (DCs). Several studies have reported the interaction between ZA and γδ T-cells, but the potential immunoregulatory activity of this drug on DCs has scarcely been investigated. Therefore, in this paper, we evaluated the effects of a therapeutic dose of ZA on the in vitro generation and maturation of DCs derived from peripheral blood monocytes of healthy adult donors. We demonstrate that ZA treatment did not affect DC differentiation, but inhibited DC maturation on lipopolysaccharide activation, as shown by the impaired expression of maturation surface markers and reduced ability to induce allogeneic T-cell proliferation. Interestingly, IL-10 secretion by mature DCs was significantly lower in ZA-treated cells than in controls. We conclude that ZA exerts its immunological in vitro activity also by modulating the maturation of DCs.


Pathology & Oncology Research | 2014

Quantification of Blood Dendritic Cells in Colorectal Cancer Patients During the Course of Disease

Giulia Orsini; Annalisa Legitimo; Alessandra Failli; Paola Ferrari; Andrea Nicolini; Roberto Spisni; Paolo Miccoli; Rita Consolini

Colorectal cancer is a malignancy with poor prognosis that might be associated with defective immune function. The aim of the present study was to investigate circulating dendritic cells in colorectal cancer patients, in order to contribute to elucidate tumor-escape mechanisms and to point out a possible correlation with the clinical condition of the disease. Therefore, we enumerated ex vivo myeloid and plasmacytoid dendritic cells, through multicolor flow cytometry, in 26 colorectal patients and 33 healthy controls. Furthermore we performed several analyses at determined time points in order to define the immunological trend of cancer patients after surgery and other conventional treatments. At the pre-operative time point the absolute number of plasmacytoid dendritic cells in cancer patients was significantly reduced in comparison to controls, this result being mainly referred to stage III-IV patients. The number of myeloid dendritic cells did not show any significant difference compared to healthy controls; interestingly the expression of the tolerogenic antigen CD85k was significantly higher on cancer patients’ myeloid dendritic cells than controls’. At the following samplings, circulating dendritic cell absolute number did not show any difference compared to controls. Conclusively the impairment of the number of circulating dendritic cells may represent one of the tumor escape mechanisms occurring in colorectal cancer. These alterations seem to be correlated to cancer progression. Our work sheds light on one of dendritic cell-based tumor immune escape mechanisms. This knowledge may be useful to the development of more effective immunotherapeutic strategies.


International Journal of Immunopathology and Pharmacology | 2011

The combination of immunosuppressive drugs with 8-methoxypsoralen and ultraviolet a light modulates the myeloid-derived dendritic cell function

Alessandra Failli; Annalisa Legitimo; Alessandro Mazzoni; L Urbani; F. Scatena; F. Mosca; Rita Consolini

The functional properties of myeloid dendritic cells (DCs) differ, depending on microenvironmental factors as well as on their stage of maturation. The main approaches for the selective enhancement of the tolerogenic properties of DCs include the induction of a pharmacological arrest of the DCs maturation and the genetical engineering of DCs expressing immunosuppressive molecules. Several immunosuppressive/anti-inflammatory agents have been discovered that potentially inhibit DC maturation and immunogenicity. Photopheresis (ECP) is an immunomodulatory therapy in which leucocytes are exposed to 8-methoxypsoralen (8-MOP) and ultraviolet (UV) A radiation (PUVA). The combination of ECP with immunosuppressive agents has demonstrated efficacy in the management of transplanted patients by reducing either the incidence of organ rejection or the pharmacological toxicity. In particular, we have observed in hepatitis C virus (HCV)-positive patients that the same combination has reduced the immunosuppressive burden and improved sustainability and efficacy of pre-emptive antiviral therapy after liver transplantation. Therefore, in our work we investigated the in vitro effects of PUVA, combined with immunosuppressive drugs (IDs), on both in vitro human DC generation and maturation, in order to contribute to understanding the immunological mechanisms underlying this pharmacological combination. Monocyte PUVA-treatment was performed by using an in vitro experimental protocol that we previously described. PUVA-treated or -untreated highly purified CD14+ cells were incubated with the association of the immunosuppressive drugs, used in the management of liver transplantation, at two different concentrations, in the presence of IL-4 and GM-CSF. The treatment with IDs at the highest concentration (corresponding to that used in clinical practice), alone or in association with PUVA, induced an immunosuppressive effect, by impairing both DC generation and maturation. Neither immunosuppressive drugs at the lowest concentration nor their combination with PUVA affected myeloid DC generation, but modified DC functions, strengthening the induction of a tolerogenic pattern. As this ID concentration was arbitrarily chosen, further experiments could highlight whether lower concentrations than those used in clinical practice would elicit the same effect on DCs and potentially improve their functional properties. This work describes an original experimental approach exploring the in vitro mechanism of action of the combined procedure of PUVA with immunosuppressive drugs, used in liver transplantation, on DCs generation and function. Our results contribute to the knowledge of the mechanisms of action of this combined procedure on DCs, suggesting useful therapeutic implications for the in vivo therapy.

Collaboration


Dive into the Alessandra Failli's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge