Andrea Stoccoro
University of Pisa
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andrea Stoccoro.
Toxicology | 2013
Andrea Stoccoro; Hanna L. Karlsson; Fabio Coppedè; Lucia Migliore
The term epigenetics includes several phenomena such as DNA methylation, histone tail modifications, and microRNA mediated mechanisms, which are able to mold the chromatin structure and/or gene expression levels, without altering the primary DNA sequence. Environmental agents can exert epigenetic properties and there is increasing evidence of epigenetic deregulation of gene expression in several human diseases, including cancer, cardiovascular diseases, autism spectrum disorders, autoimmune diseases, and neurodegeneration, among others. Given the widespread use and dispersion in the environment of nano-sized materials, this article summarizes the studies performed so far to evaluate their potential epigenetic properties. Those studies highlight the ability of certain nano-sized compounds to induce an impaired expression of genes involved in DNA methylation reactions leading to global DNA methylation changes, as well as changes of gene specific methylation of tumor suppressor genes, inflammatory genes, and DNA repair genes, all potentially involved in cancer development. Moreover, some nano-sized compounds are able to induce changes in the acetylation and methylation of histone tails, as well as microRNA deregulated expression. We also provided a detailed description of currently available methodologies to evaluate epigenetic modifications. Standard protocols are currently available to evaluate cytotoxic and genotoxic effects of nano-sized materials. By contrast, there are at present no available standard protocols to evaluate the epigenetic potential of any given compound. The currently available methodologies offer different, but often complementary information to characterize potential epigenetic changes induced by exposure to nano-sized compounds. Given the widespread use and dispersion in the environment of nano-sized materials, at present and foreseeable in the near future, and in light of the indication of potential epigenetic properties here reviewed, more attention should be paid to unravel the consequences of such effects in future studies.
PLOS ONE | 2013
Francesca Migheli; Andrea Stoccoro; Fabio Coppedè; Wan Adnan Wan Omar; Alessandra Failli; Rita Consolini; Massimo Seccia; Roberto Spisni; Paolo Miccoli; John C. Mathers; Lucia Migliore
There is increasing interest in the development of cost-effective techniques for the quantification of DNA methylation biomarkers. We analyzed 90 samples of surgically resected colorectal cancer tissues for APC and CDKN2A promoter methylation using methylation sensitive-high resolution melting (MS-HRM) and pyrosequencing. MS-HRM is a less expensive technique compared with pyrosequencing but is usually more limited because it gives a range of methylation estimates rather than a single value. Here, we developed a method for deriving single estimates, rather than a range, of methylation using MS-HRM and compared the values obtained in this way with those obtained using the gold standard quantitative method of pyrosequencing. We derived an interpolation curve using standards of known methylated/unmethylated ratio (0%, 12.5%, 25%, 50%, 75%, and 100% of methylation) to obtain the best estimate of the extent of methylation for each of our samples. We observed similar profiles of methylation and a high correlation coefficient between the two techniques. Overall, our new approach allows MS-HRM to be used as a quantitative assay which provides results which are comparable with those obtained by pyrosequencing.
Archives of Toxicology | 2014
Elisa Bustaffa; Andrea Stoccoro; Fabrizio Bianchi; Lucia Migliore
Arsenic is a human carcinogen with weak mutagenic properties that induces tumors through mechanisms not yet completely understood. People worldwide are exposed to arsenic-contaminated drinking water, and epidemiological studies showed a high percentage of lung, bladder, liver, and kidney cancer in these populations. Several mechanisms by which arsenical compounds induce tumorigenesis were proposed including genotoxic damage and chromosomal abnormalities. Over the past decade, a growing body of evidence indicated that epigenetic modifications have a role in arsenic-inducing adverse effects on human health. The main epigenetic mechanisms are DNA methylation in gene promoter regions that regulate gene expression, histone tail modifications that regulate the accessibility of transcriptional machinery to genes, and microRNA activity (noncoding RNA able to modulate mRNA translation). The “double capacity” of arsenic to induce mutations and epimutations could be the main cause of arsenic-induced carcinogenesis. The aim of this review is to better clarify the mechanisms of the initiation and/or the promotion of arsenic-induced carcinogenesis in order to understand the best way to perform an early diagnosis and a prompt prevention that is the key point for protecting arsenic-exposed population. Studies on arsenic-exposed population should be designed in order to examine more comprehensively the presence and consequences of these genetic/epigenetic alterations.
Neuroscience Letters | 2015
Pierpaola Tannorella; Andrea Stoccoro; Gloria Tognoni; Lucia Petrozzi; Maria Grazia Salluzzo; Alda Ragalmuto; Gabriele Siciliano; Alexander G. Haslberger; Paolo Bosco; Ubaldo Bonuccelli; Lucia Migliore; Fabio Coppedè
We collected blood DNA from 120 late-onset Alzheimers disease (AD) patients and 115 healthy matched controls and analysed the methylation levels of genes involved in amyloid-beta peptide production (PSEN1 and BACE1), in DNA methylation (DNMT1, DNMT3A and DNMT3B), and in one-carbon metabolism (MTHFR), searching for correlation with age and gender, with biomarkers of one-carbon metabolism (plasma homocysteine, and serum folate and vitamin B12 levels), and with disease status (being healthy or having AD). We also evaluated the contribution of the APOE ϵ4 allele, the major late-onset AD genetic risk factor, to the studied gene methylation levels. All the genes showed low mean methylation levels (<5%) in both AD and control DNA, no difference between groups, and no correlation with the studied biomarkers, except for MTHFR that showed methylation levels ranging from 5% to 75%, and correlation with circulating biomarkers of one-carbon metabolism. However, mean MTHFR methylation levels were similar between groups (31.1% in AD and 30.7% in controls, P=0.58). Overall, present data suggest that none of the studied regions is differently methylated in blood DNA between AD and control subjects.
Journal of Alzheimer's Disease | 2016
Enzo Grossi; Andrea Stoccoro; Pierpaola Tannorella; Lucia Migliore; Fabio Coppedè
BACKGROUND There is increasing interest in DNA methylation studies in Alzheimers disease (AD), but little is still known concerning the relationship between gene-promoter methylation and circulating biomarkers of one-carbon metabolism in patients. OBJECTIVE To detect the connections among circulating folate, homocysteine (hcy) and vitamin B12 levels and promoter methylation levels of PSEN1, BACE1, DNMT1, DNMT3A, DNMT3B, and MTHFR genes in blood DNA. METHODS We applied a data mining system called Auto Contractive Map to an existing database of 100 AD and 100 control individuals. RESULTS Low vitamin B12 was linked to the AD condition, to low folates, and to high hcy. Low PSEN1 methylation was linked to low folate levels as well as to low promoter methylation of BACE1 and DNMTs genes. Low hcy was linked to controls, to high folates and vitamin B12, as well as to high methylation levels of most of the studied genes. CONCLUSIONS The present pilot study suggests that promoter methylation levels of the studied genes are linked to circulating levels of folates, hcy, and vitamin B12.
Toxicology Letters | 2017
Andrea Stoccoro; Sebastiano Di Bucchianico; Fabio Coppedè; Jessica Ponti; Chiara Uboldi; Magda Blosi; Camilla Delpivo; Simona Ortelli; Anna Luisa Costa; Lucia Migliore
Titanium dioxide nanoparticles (TiO2 NP) are broadly used in a wide range of applications. Several studies have reported that TiO2 NP possess cytotoxic and genotoxic properties that could induce adverse health effects in humans. The FP7 Sanowork project was aimed to minimize occupational hazard and exposure to engineered nanomaterials (ENM), including TiO2 NP, through the surface modification in order to avoid possible adverse toxic effects for humans. In this study we investigated cytotoxicity, genotoxicity and epigenetic properties of TiO2 NP uncoated and coated with silica or citrate, as well as of the benchmark material P25. We used a panel of in vitro assays in the human lung epithelial cell line A549, in order to better understand if the remediation strategy adopted was able to counteract possible toxic effects of uncoated TiO2 NP. Our results showed that the uncoated TiO2 NP were both cytotoxic and genotoxic, and the remediation strategy adopted did not reduce the adverse effects of uncoated TiO2 NP. In particular, the presence of citrate was able to increase their cytotoxicity and genotoxicity, exerting also epigenotoxic effects, as evaluated by the marked reduction of LINE-1 methylation levels.
Journal of Alzheimer's Disease | 2017
Andrea Stoccoro; Gabriele Siciliano; Lucia Migliore; Fabio Coppedè
Mitochondrial impairment is a feature of neurodegeneration and many investigators have suggested that epigenetic modifications of the mitochondrial DNA (mtDNA) might be involved in late-onset Alzheimers disease (LOAD), but evidence in humans is limited. We assessed the methylation levels of the mtDNA D-loop region in blood DNA from 133 LOAD patients and 130 controls, observing a significant 25% reduction of DNA methylation levels in the first group (2.3 versus 3.1%). Overall, the present data indicate that there is a decreased methylation of the D-loop region in LOAD peripheral blood DNA, suggesting that mtDNA epimutations deserve further investigations in AD pathogenesis.
Mutagenesis | 2016
Andrea Stoccoro; Sebastiano Di Bucchianico; Chiara Uboldi; Fabio Coppedè; Jessica Ponti; Claudia Placidi; Magda Blosi; Simona Ortelli; Anna Luisa Costa; Lucia Migliore
The FP7 Sanowork project was aimed to minimise occupational hazard and exposure to engineered nanomaterials (ENM) through the surface modification in order to prevent possible health effects. In this frame, a number of nanoparticles (NP) have been selected, among which zirconium (ZrO2) and titanium (TiO2) dioxide. In this study, we tested ZrO2 NP and TiO2 NP either in their pristine (uncoated) form, or modified with citrate and/or silica on their surface. As benchmark material, Aeroxide® P25 was used. We assessed cytotoxicity, genotoxicity and induction of morphological neoplastic transformation of NP by using a panel of in vitro assays in an established mammalian cell line of murine origin (Balb/3T3). Cell viability was evaluated by means of colony-forming efficiency assay (CFE). Genotoxicity was investigated by cytokinesis-block micronucleus cytome assay (CBMN cyt) and comet assay, and by the use of the restriction enzymes EndoIII and Fpg, oxidatively damaged DNA was detected; finally, the morphological neoplastic transformation of NP was assayed in vitro by cell transformation assay (CTA). Our results show that the surface remediation has not been effective in modifying cyto- and genotoxic properties of the nanomaterials tested; indeed, in the case of remediation of zirconia and titania with citrate, there is a tendency to emphasise the toxic effects. The use of a panel of assays, such as those we have employed, allowing the evaluation of multiple endpoints, including cell transformation, seems particularly advisable especially in the case of long-term exposure effects in the same cell type.
Amyotrophic Lateral Sclerosis | 2018
Fabio Coppedè; Andrea Stoccoro; Lorena Mosca; Roberta Gallo; Claudia Tarlarini; Christian Lunetta; Alessandro Marocchi; Lucia Migliore; Silvana Penco
Abstract Objective: More than 180 different superoxide dismutase 1 (SOD1) mutations have been described to date in amyotrophic lateral sclerosis (ALS) patients, including not completely penetrant ones leading to phenotypic heterogeneity among carriers. We collected DNA samples from five ALS families with not fully penetrant SOD1 mutations (p.Asn65Ser, p.Gly72Ser, p.Gly93Asp, and p.Gly130_Glu133del) searching for epigenetic differences among ALS patients, asymptomatic/paucisymptomatic carriers and non-carrier family members. Methods: Global DNA methylation levels (5-methylcytosine levels) were determined in blood DNA samples with an enzyme-linked immunosorbent assay (ELISA), and the methylation analysis of SOD1, FUS, TARDBP and C9orf72 genes was performed using Methylation-Sensitive High-Resolution Melting (MS-HRM) technique. Results: Global DNA methylation levels were significantly higher in blood DNA of ALS patients than in asymptomatic/paucisymptomatic carriers or family members non-carriers of SOD1 mutations, and a positive correlation between global DNA methylation levels and disease duration (months) was observed. SOD1, FUS, TARDBP and C9orf72 gene promoters were demethylated in all subjects. Conclusions: The present study suggests that global changes in DNA methylation might contribute to the ALS phenotype in carriers of not fully penetrant SOD1 mutations, thus reinforcing the role of epigenetic factors in modulating the phenotypic expression of the disease.
Journal of Alzheimer's Disease | 2017
Andrea Stoccoro; Pierpaola Tannorella; Maria Grazia Salluzzo; Raffaele Ferri; Corrado Romano; Benedetta Nacmias; Gabriele Siciliano; Lucia Migliore; Fabio Coppedè
BACKGROUND A functional polymorphism in the methylenetetrahydrofolate reductase (MTHFR) gene, namely C677T (rs1801133), results in increased Hcy levels and has been associated with risk of late-onset Alzheimers disease (LOAD). Many investigators reported association between rs1801133 and LOAD risk in Asian populations and in carriers of the apolipoprotein E (APOE) ɛ4 allele, but recent meta-analyses suggest a contribution also in other populations, including Caucasians and/or northern Africans. OBJECTIVE To further address this issue, we performed a relatively large case-control study, including 581 LOAD patients and 468 matched controls of Italian origin. APOE data were available for a subgroup of almost 600 subjects. METHODS Genotyping for rs1801133 was performed with PCR-RFLP techniques. RESULTS In the total population, the MTHFR 677T allele (OR = 1.20; 95% CI = 1.01-1.43) and carriers of the MTHFR 677T allele (CT+TT versus CC: OR = 1.34; 95% CI = 1.03-1.73) resulted in increased LOAD risk. Similarly, in APOEɛ4 carriers, we observed an increased frequency of MTHFR 677CT carriers (CT versus CC: OR = 2.82; 95% CI = 1.25-6.32). Very interestingly, also in non-APOEɛ4 carriers, both MTHFR 677T allele (OR = 1.38; 95% CI = 1.03-1.85) and MTHFR 677TT genotype (OR = 2.08; 95% CI = 1.11-3.90) were associated with LOAD. All these associations survived after corrections for age, gender, and multiple testing. CONCLUSIONS The present results suggest that the MTHFR C677T polymorphism is likely a LOAD risk factor in our cohort, either in APOEɛ4 or in non-APOEɛ4 carriers.