Alessandro A. Rizzo
University of Connecticut
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alessandro A. Rizzo.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Si Ming Man; Andrew Ekpenyong; Panagiotis Tourlomousis; Sarra Achouri; Eugenia Cammarota; Katherine Hughes; Alessandro A. Rizzo; Gilbert Ng; John A. Wright; Pietro Cicuta; Jochen Guck; Clare E. Bryant
Significance Infectious diseases are responsible for one-third of all mortality worldwide. Innate immunity is critical for mounting host defenses that eliminate pathogens. Salmonella is a global food-borne pathogen that infects and replicates within macrophages. How inflammasomes—multimeric protein complexes that provide innate immune protection—function to restrict bacterial burden in macrophages remains unknown. We show that actin polymerization is critical for NLRC4 inflammasome activation in response to Salmonella infection. NLRC4 activation in Salmonella-infected cells prevents further uptake of bacteria by inducing cellular stiffness and antimicrobial responses, which prevent bacterial dissemination in the host. These results demonstrate a critical link between innate immunity and the actin cytoskeleton in the cellular defense against Salmonella infection. Salmonellosis is one of the leading causes of food poisoning worldwide. Controlling bacterial burden is essential to surviving infection. Nucleotide-binding oligomerization domain-like receptors (NLRs), such as NLRC4, induce inflammasome effector functions and play a crucial role in controlling Salmonella infection. Inflammasome-dependent production of IL-1β recruits additional immune cells to the site of infection, whereas inflammasome-mediated pyroptosis of macrophages releases bacteria for uptake by neutrophils. Neither of these functions is known to directly kill intracellular salmonellae within macrophages. The mechanism, therefore, governing how inflammasomes mediate intracellular bacterial-killing and clearance in host macrophages remains unknown. Here, we show that actin polymerization is required for NLRC4-dependent regulation of intracellular bacterial burden, inflammasome assembly, pyroptosis, and IL-1β production. NLRC4-induced changes in actin polymerization are physically manifested as increased cellular stiffness, and leads to reduced bacterial uptake, production of antimicrobial molecules, and arrested cellular migration. These processes act in concert to limit bacterial replication in the cell and dissemination in tissues. We show, therefore, a functional link between innate immunity and actin turnover in macrophages that underpins a key host defense mechanism for the control of salmonellosis.
Biochemistry | 2014
Alessandro A. Rizzo; Paige Salerno; Irina Bezsonova; Dmitry M. Korzhnev
Ubiquitin-mediated interactions are critical for the cellular DNA damage response (DDR). Therefore, many DDR-related proteins contain ubiquitin-binding domains, including ubiquitin-binding zinc fingers (UBZs). The majority of these UBZ domains belong to the C2H2 (type 3 Polη-like) or C2HC (type 4 Rad18-like) family. We have used nuclear magnetic resonance (NMR) spectroscopy to characterize the binding to ubiquitin and determine the structure of the type 4 UBZ domain (UBZ4) from human Rad18, which is a key ubiquitin ligase in the DNA damage tolerance pathway responsible for monoubiquitination of the DNA sliding clamp PCNA. The Rad18-UBZ domain binds ubiquitin with micromolar affinity and adopts a β1-β2-α fold similar to the previously characterized type 3 UBZ domain (UBZ3) from the translesion synthesis DNA polymerase Polη. However, despite nearly identical structures, a disparity in the location of binding-induced NMR chemical shift perturbations shows that the Rad18-UBZ4 and Polη-UBZ3 domains bind ubiquitin in distinctly different modes. The Rad18-UBZ4 domain interacts with ubiquitin with the α-helix and strand β1 as shown by the structure of the Rad18-UBZ domain-ubiquitin complex determined in this work, while the Polη-UBZ3 domain exclusively utilizes the α-helix. Our findings suggest the existence of two classes of UBZ domains in DDR-related proteins with similar structures but unique ubiquitin binding properties and provide context for further study to establish the differential roles of these domains in the complex cellular response to DNA damage.
Biomolecular Nmr Assignments | 2013
Alessandro A. Rizzo; LaTasha C.R. Fraser; Sarah R. Sheftic; Margaret M. Suhanovsky; Carolyn M. Teschke; Andrei T. Alexandrescu
The bacteriophage P22 virion is assembled from identical coat protein monomers in a complex reaction that is generally conserved among tailed, double-stranded DNA bacteriophages and viruses. Many coat proteins of dsDNA viruses have structures based on the HK97 fold, but in some viruses and phages there are additional domains. In the P22 coat protein, a “telokin-like” domain was recently identified, whose structure has not yet been characterized at high-resolution. Two recently published low-resolution cryo-EM reconstructions suggest markedly different folds for the telokin-like domain that lead to alternative conclusions about its function in capsid assembly and stability. Here we report 1H, 15N, and 13C NMR resonance assignments for the telokin-like domain. The secondary structure predicted from the chemical shift values obtained in this work shows significant discrepancies from both cryo-EM models but agrees better with one of the models. In particular, the functionally important “D-loop” in one model shows chemical shifts and solvent exchange protection more consistent with β-sheet structure. Our work will set the basis for a high-resolution NMR structure determination of the telokin-like domain that will help improve the cryo-EM models, and in turn lead to a better understanding of how coat protein monomers assemble into the icosahedral capsids required for virulence.
ACS Chemical Biology | 2017
Vibhavari Sail; Alessandro A. Rizzo; Nimrat Chatterjee; Radha Charan Dash; Zuleyha Ozen; Graham C. Walker; Dmitry M. Korzhnev; M. Kyle Hadden
Translesion synthesis (TLS) is an important mechanism through which proliferating cells tolerate DNA damage during replication. The mutagenic Rev1/Polζ-dependent branch of TLS helps cancer cells survive first-line genotoxic chemotherapy and introduces mutations that can contribute to the acquired resistance so often observed with standard anticancer regimens. As such, inhibition of Rev1/Polζ-dependent TLS has recently emerged as a strategy to enhance the efficacy of first-line chemotherapy and reduce the acquisition of chemoresistance by decreasing tumor mutation rate. The TLS DNA polymerase Rev1 serves as an integral scaffolding protein that mediates the assembly of the active multiprotein TLS complexes. Protein-protein interactions (PPIs) between the C-terminal domain of Rev1 (Rev1-CT) and the Rev1-interacting region (RIR) of other TLS DNA polymerases play an essential role in regulating TLS activity. To probe whether disrupting the Rev1-CT/RIR PPI is a valid approach for developing a new class of targeted anticancer agents, we designed a fluorescence polarization-based assay that was utilized in a pilot screen for small molecule inhibitors of this PPI. Two small molecule scaffolds that disrupt this interaction were identified, and secondary validation assays confirmed that compound 5 binds to Rev1-CT at the RIR interface. Finally, survival and mutagenesis assays in mouse embryonic fibroblasts and human fibrosarcoma HT1080 cells treated with cisplatin and ultraviolet light indicate that these compounds inhibit mutagenic Rev1/Polζ-dependent TLS in cells, validating the Rev1-CT/RIR PPI for future anticancer drug discovery and identifying the first small molecule inhibitors of TLS that target Rev1-CT.
Proceedings of the National Academy of Sciences of the United States of America | 2018
Alessandro A. Rizzo; Faye-Marie Vassel; Nimrat Chatterjee; Sanjay D’Souza; Yunfeng Li; Bing Hao; Michael T. Hemann; Graham C. Walker; Dmitry M. Korzhnev
Significance We describe a class of protein–protein interactions mediated by the HORMA (Hop1, Rev7, Mad2) dimerization interface of Rev7, a multitasking scaffolding protein involved in translesion synthesis (TLS), repair of double-strand breaks, and mitosis. Biochemical and structural analyses of Rev7 dimerization reveal an unexpected architecture of the Rev1/Polζ TLS complex, which plays a central role in replication of damaged DNA, and describe the mechanism of Rev7 interactions with HORMA proteins from other pathways. Assays in Rev7−/− cells complemented with mutant Rev7 provide evidence that protein–protein interactions mediated by the Rev7 HORMA interface are important for the DNA damage response. These results contribute to the structural biology of DNA replication and repair and to understanding of the important class of HORMA proteins. The translesion synthesis (TLS) polymerases Polζ and Rev1 form a complex that enables replication of damaged DNA. The Rev7 subunit of Polζ, which is a multifaceted HORMA (Hop1, Rev7, Mad2) protein with roles in TLS, DNA repair, and cell-cycle control, facilitates assembly of this complex by binding Rev1 and the catalytic subunit of Polζ, Rev3. Rev7 interacts with Rev3 by a mechanism conserved among HORMA proteins, whereby an open-to-closed transition locks the ligand underneath the “safety belt” loop. Dimerization of HORMA proteins promotes binding and release of this ligand, as exemplified by the Rev7 homolog, Mad2. Here, we investigate the dimerization of Rev7 when bound to the two Rev7-binding motifs (RBMs) in Rev3 by combining in vitro analyses of Rev7 structure and interactions with a functional assay in a Rev7−/− cell line. We demonstrate that Rev7 uses the conventional HORMA dimerization interface both to form a homodimer when tethered by the two RBMs in Rev3 and to heterodimerize with other HORMA domains, Mad2 and p31comet. Structurally, the Rev7 dimer can bind only one copy of Rev1, revealing an unexpected Rev1/Polζ architecture. In cells, mutation of the Rev7 dimer interface increases sensitivity to DNA damage. These results provide insights into the structure of the Rev1/Polζ TLS assembly and highlight the function of Rev7 homo- and heterodimerization.
Journal of Chemical Information and Modeling | 2018
Radha Charan Dash; Zuleyha Ozen; Alessandro A. Rizzo; Socheata Lim; Dmitry M. Korzhnev; M. Kyle Hadden
Translesion synthesis (TLS) is a mechanism of replication past damaged DNA through which multiple forms of human cancer survive and acquire resistance to first-line genotoxic chemotherapies. As such, TLS is emerging as a promising target for the development of a new class of anticancer agents. The C-terminal domain of the DNA polymerase Rev1 (Rev1-CT) mediates assembly of the functional TLS complex through protein-protein interactions (PPIs) with Rev1 interacting regions (RIRs) of several other TLS DNA polymerases. Utilizing structural knowledge of the Rev1-CT/RIR interface, we have identified the phenazopyridine scaffold as an inhibitor of this essential TLS PPI. We demonstrate direct binding of this scaffold to Rev1-CT, and the synthesis and evaluation of a small series of analogues have provided important structure-activity relationships for further development of this scaffold. Furthermore, we utilized the umbrella sampling method to predict the free energy of binding to Rev1-CT for each of our analogues. Binding energies calculated through umbrella sampling correlated well with experimentally determined IC50 values, validating this computational tool as a viable approach to predict the biological activity for inhibitors of the Rev1-CT/RIR PPI.
Bioorganic & Medicinal Chemistry | 2018
Zuleyha Ozen; Radha Charan Dash; Kaitlyn R. McCarthy; Samantha A. Chow; Alessandro A. Rizzo; Dmitry M. Korzhnev; M. Kyle Hadden
Translesion synthesis (TLS) is a DNA damage tolerance mechanism that allows replicative bypass of DNA lesions, including DNA adducts formed by cancer chemotherapeutics. Previous studies demonstrated that suppression of TLS can increase sensitivity of cancer cells to first-line chemotherapeutics and decrease mutagenesis linked to the onset of chemoresistance, marking the TLS pathway as an emerging therapeutic target. TLS is mediated by a heteroprotein complex consisting of specialized DNA polymerases, including the Y-family DNA polymerase Rev1. Previously, we developed a screening assay to identify the first small molecules that disrupt the protein-protein interaction between the C-terminal domain of Rev1 (Rev1-CT) and the Rev1-interacting region (RIR) present in multiple DNA polymerases involved in TLS. Herein we report additional hit scaffolds that inhibit this key TLS PPI. In addition, through a series of biochemical, computational, and cellular studies we have identified preliminary structure-activity relationships and determined initial pharmacokinetic parameters for our original hits.
Biomolecular Nmr Assignments | 2017
Esmael M. Alyami; Alessandro A. Rizzo; Penny J. Beuning; Dmitry M. Korzhnev
The β-clamp protein and the γ clamp loader complex are essential components of bacterial DNA replication machinery. The β-clamp is a ring-shaped homodimer that encircles DNA and increases the efficiency of replication by providing a binding platform for DNA polymerases and other replication-related proteins. The β-clamp is loaded onto DNA by the five-subunit γ clamp loader complex in a multi-step ATP-dependent process. The initial steps of this process involve the cooperative binding of the β-clamp by the five subunits of ATP-bound clamp loader, which induces or traps an open conformation of the clamp. Remarkably, the δ subunit of the E. coli clamp loader, or even its 140 residue N-terminal domain (called mini-δ), alone can shift conformational equilibrium of the β-clamp towards the open state. Here we report nearly complete backbone and side-chain 1H, 13C and 15N NMR resonance assignments of mini-δ that will facilitate NMR studies of the mechanisms of β-clamp opening and its loading on DNA by the clamp loader.
Structure | 2014
Alessandro A. Rizzo; Margaret M. Suhanovsky; Matthew L. Baker; LaTasha C.R. Fraser; Lisa M. Jones; Don L. Rempel; Michael L. Gross; Wah Chiu; Andrei T. Alexandrescu; Carolyn M. Teschke
Biochemistry | 2016
Yulia Pustovalova; Mariana T. Q. de Magalhães; Sanjay D’Souza; Alessandro A. Rizzo; George Korza; Graham C. Walker; Dmitry M. Korzhnev