Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carolyn M. Teschke is active.

Publication


Featured researches published by Carolyn M. Teschke.


Biophysical Journal | 2003

Penton Release from P22 Heat-Expanded Capsids Suggests Importance of Stabilizing Penton-Hexon Interactions during Capsid Maturation

Carolyn M. Teschke; Amy McGough; Pamela A. Thuman-Commike

Bacteriophage assembly frequently begins with the formation of a precursor capsid that serves as a DNA packaging machine. The DNA packaging is accompanied by a morphogenesis of the small round precursor capsid into a large polyhedral DNA-containing mature phage. In vitro, this transformation can be induced by heat or chemical treatment of P22 procapsids. In this work, we examine bacteriophage P22 morphogenesis by comparing three-dimensional structures of capsids expanded both in vitro by heat treatment and in vivo by DNA packaging. The heat-expanded capsid reveals a structure that is virtually the same as the in vivo expanded capsid except that the pentons, normally present at the icosahedral fivefold positions, have been released. The similarities of these two capsid structures suggest that the mechanism of heat expansion is similar to in vivo expansion. The loss of the pentons further suggests the necessity of specific penton-hexon interactions during expansion. We propose a model whereby the penton-hexon interactions are stabilized through interactions of DNA, coat protein, and other minor proteins. When considered in the context of other studies using chemical or heat treatment of capsids, our study indicates that penton release may be a common trend among double-stranded DNA containing viruses.


Virology | 2010

'Let the phage do the work': using the phage P22 coat protein structures as a framework to understand its folding and assembly mutants.

Carolyn M. Teschke; Kristin N. Parent

The amino acid sequence of viral capsid proteins contains information about their folding, structure and self-assembly processes. While some viruses assemble from small preformed oligomers of coat proteins, other viruses such as phage P22 and herpesvirus assemble from monomeric proteins (Fuller and King, 1980; Newcomb et al., 1999). The subunit assembly process is strictly controlled through protein:protein interactions such that icosahedral structures are formed with specific symmetries, rather than aberrant structures. dsDNA viruses commonly assemble by first forming a precursor capsid that serves as a DNA packaging machine (Earnshaw, Hendrix, and King, 1980; Heymann et al., 2003). DNA packaging is accompanied by a conformational transition of the small precursor procapsid into a larger capsid for isometric viruses. Here we highlight the pseudo-atomic structures of phage P22 coat protein and rationalize several decades of data about P22 coat protein folding, assembly and maturation generated from a combination of genetics and biochemistry.


Journal of Bacteriology | 2008

ATPase Activity of Mycobacterium tuberculosis SecA1 and SecA2 Proteins and Its Importance for SecA2 Function in Macrophages

Jie M. Hou; Nadia G. D'Lima; Nathan W. Rigel; Henry S. Gibbons; Jessica R. McCann; Miriam Braunstein; Carolyn M. Teschke

The Sec-dependent translocation pathway that involves the essential SecA protein and the membrane-bound SecYEG translocon is used to export many proteins across the cytoplasmic membrane. Recently, several pathogenic bacteria, including Mycobacterium tuberculosis, were shown to possess two SecA homologs, SecA1 and SecA2. SecA1 is essential for general protein export. SecA2 is specific for a subset of exported proteins and is important for M. tuberculosis virulence. The enzymatic activities of two SecA proteins from the same microorganism have not been defined for any bacteria. Here, M. tuberculosis SecA1 and SecA2 are shown to bind ATP with high affinity, though the affinity of SecA1 for ATP is weaker than that of SecA2 or Escherichia coli SecA. Amino acid substitution of arginine or alanine for the conserved lysine in the Walker A motif of SecA2 eliminated ATP binding. We used the SecA2(K115R) variant to show that ATP binding was necessary for the SecA2 function of promoting intracellular growth of M. tuberculosis in macrophages. These results are the first to show the importance of ATPase activity in the function of accessory SecA2 proteins.


Virology | 2011

Decoding bacteriophage P22 assembly: identification of two charged residues in scaffolding protein responsible for coat protein interaction

Juliana R. Cortines; Peter R. Weigele; Eddie B. Gilcrease; Sherwood Casjens; Carolyn M. Teschke

Proper assembly of viruses must occur through specific interactions between capsid proteins. Many double-stranded DNA viruses and bacteriophages require internal scaffolding proteins to assemble their coat proteins into icosahedral capsids. The 303 amino acid bacteriophage P22 scaffolding protein is mostly helical, and its C-terminal helix-turn-helix (HTH) domain binds to the coat protein during virion assembly, directing the formation of an intermediate structure called the procapsid. The interaction between coat and scaffolding protein HTH domain is electrostatic, but the amino acids that form the protein-protein interface have yet to be described. In the present study, we used alanine scanning mutagenesis of charged surface residues of the C-terminal HTH domain of scaffolding protein. We have determined that P22 scaffolding protein residues R293 and K296 are crucial for binding to coat protein and that the neighboring charges are not essential but do modulate the affinity between the two proteins.


Journal of Biological Chemistry | 1999

Single Amino Acid Substitutions Globally Suppress the Folding Defects of Temperature-sensitive Folding Mutants of Phage P22 Coat Protein

Lili A. Aramli; Carolyn M. Teschke

The amino acid sequence of a polypeptide defines both the folding pathway and the final three-dimensional structure of a protein. Eighteen amino acid substitutions have been identified in bacteriophage P22 coat protein that are defective in folding and cause their folding intermediates to be substrates for GroEL and GroES. These temperature-sensitive folding (tsf) substitutions identify amino acids that are critical for directing the folding of coat protein. Additional amino acid residues that are critical to the folding process of P22 coat protein were identified by isolating second site suppressors of the tsf coat proteins. Suppressor substitutions isolated from the phage carrying the tsf coat protein substitutions included global suppressors, which are substitutions capable of alleviating the folding defects of numerous tsf coat protein mutants. In addition, potential global and site-specific suppressors were isolated, as well as a group of same site amino acid substitutions that had a less severe phenotype than the tsf parent. The global suppressors were located at positions 163, 166, and 170 in the coat protein sequence and were 8–190 amino acid residues away from the tsf parent. Although the folding of coat proteins with tsf amino acid substitutions was improved by the global suppressor substitutions, GroEL remained necessary for folding. Therefore, we believe that the global suppressor sites identify a region that is critical to the folding of coat protein.


Virology | 2015

Nature׳s favorite building block: Deciphering folding and capsid assembly of proteins with the HK97-fold

Margaret M. Suhanovsky; Carolyn M. Teschke

For many (if not all) bacterial and archaeal tailed viruses and eukaryotic Herpesvirdae the HK97-fold serves as the major architectural element in icosahedral capsid formation while still enabling the conformational flexibility required during assembly and maturation. Auxiliary proteins or Δ-domains strictly control assembly of multiple, identical, HK97-like subunits into procapsids with specific icosahedral symmetries, rather than aberrant non-icosahedral structures. Procapsids are precursor structures that mature into capsids in a process involving release of auxiliary proteins (or cleavage of Δ-domains), dsDNA packaging, and conformational rearrangement of the HK97-like subunits. Some coat proteins built on the ubiquitous HK97-fold also have accessory domains or loops that impart specific functions, such as increased monomer, procapsid, or capsid stability. In this review, we analyze the numerous HK97-like coat protein structures that are emerging in the literature (over 40 at time of writing) by comparing their topology, additional domains, and their assembly and misassembly reactions.


Molecular Microbiology | 2010

Determinants of bacteriophage P22 polyhead formation: the role of coat protein flexibility in conformational switching

Margaret M. Suhanovsky; Kristin N. Parent; Sarah E. Dunn; Timothy S. Baker; Carolyn M. Teschke

We have investigated determinants of polyhead formation in bacteriophage P22 in order to understand the molecular mechanism by which coat protein assembly goes astray. Polyhead assembly is caused by amino acid substitutions in coat protein at position 170, which is located in the β‐hinge. In vivo scaffolding protein does not correct polyhead assembly by F170A or F170K coat proteins, but does for F170L. All F170 variants bind scaffolding protein more weakly than wild‐type as observed by affinity chromatography with scaffolding protein‐agarose and scaffolding protein shell re‐entry experiments. Electron cryo‐microscopy and three‐dimensional image reconstructions of F170A and F170K empty procapsid shells showed that there is a decreased flexibility of the coat subunits relative to wild‐type. This was confirmed by limited proteolysis and protein sequencing, which showed increased protection of the A‐domain. Our data support the conclusion that the decrease in flexibility of the A‐domain leads to crowding of the subunits at the centre of the pentons, thereby favouring the hexon configuration during assembly. Thus, correct coat protein interactions with scaffolding protein and maintenance of sufficient coat protein flexibility are crucial for proper P22 assembly. The coat protein β‐hinge region is the major determinant for both features.


Biomaterials | 2012

Stepwise Molecular Display Utilizing Icosahedral and Helical Complexes of Phage Coat and Decoration Proteins in the Development of Robust Nanoscale Display Vehicles

Kristin N. Parent; Christina T. Deedas; Edward H. Egelman; Sherwood Casjens; Timothy S. Baker; Carolyn M. Teschke

A stepwise addition protocol was developed to display cargo using bacteriophage P22 capsids and the phage decoration (Dec) protein. Three-dimensional image reconstructions of frozen-hydrated samples of P22 particles with nanogold-labeled Dec bound to them revealed the locations of the N- and C-termini of Dec. Each terminus is readily accessible for molecular display through affinity tags such as nickel-nitrilotriacetic acid, providing a total of 240 cargo-binding sites. Dec was shown by circular dichroism to be a β-sheet rich protein, and fluorescence anisotropy binding experiments demonstrated that Dec binds to P22 heads with high (~110 nm) affinity. Dec also binds to P22 nanotubes, which are helically symmetric assemblies that form when the P22 coat protein contains the F170A amino acid substitution. Several classes of tubes with Dec bound to them were visualized by cryo-electron microscopy and their three-dimensional structures were determined by helical reconstruction methods. In all instances, Dec trimers bound to P22 capsids and nanotubes at positions where three neighboring capsomers (oligomers of six coat protein subunits) lie in close proximity to one another. Stable interactions between Dec and P22 allow for the development of robust, nanoscale size, display vehicles.


Physical Biology | 2010

Cryo-reconstructions of P22 polyheads suggest that phage assembly is nucleated by trimeric interactions among coat proteins

Kristin N. Parent; Robert S. Sinkovits; Margaret M. Suhanovsky; Carolyn M. Teschke; Edward H. Egelman; Timothy S. Baker

Bacteriophage P22 forms an isometric capsid during normal assembly, yet when the coat protein (CP) is altered at a single site, helical structures (polyheads) also form. The structures of three distinct polyheads obtained from F170L and F170A variants were determined by cryo-reconstruction methods. An understanding of the structures of aberrant assemblies such as polyheads helps to explain how amino acid substitutions affect the CP, and these results can now be put into the context of CP pseudo-atomic models. F170L CP forms two types of polyhead and each has the CP organized as hexons (oligomers of six CPs). These hexons have a skewed structure similar to that in procapsids (precursor capsids formed prior to dsDNA packaging), yet their organization differs completely in polyheads and procapsids. F170A CP forms only one type of polyhead, and though this has hexons organized similarly to hexons in F170L polyheads, the hexons are isometric structures like those found in mature virions. The hexon organization in all three polyheads suggests that nucleation of procapsid assembly occurs via a trimer of CP monomers, and this drives formation of a T = 7, isometric particle. These variants also form procapsids, but they mature quite differently: F170A expands spontaneously at room temperature, whereas F170L requires more energy. The P22 CP structure along with scaffolding protein interactions appear to dictate curvature and geometry in assembled structures and residue 170 significantly influences both assembly and maturation.


Journal of Biological Chemistry | 1998

GroEL and GroES Control of Substrate Flux in the in Vivo Folding Pathway of Phage P22 Coat Protein

Walter S. Nakonechny; Carolyn M. Teschke

Our present understanding of the action of the chaperonins GroEL/S on protein folding is based primarily on in vitro studies, whereas the folding of proteins in the cellular milieu has not been as thoroughly investigated. We have developed a means of examining in vivo protein folding and assembly that utilizes the coat protein of bacteriophage P22, a naturally occurring substrate of GroEL/S. Here we show that amino acid substitutions in coat protein that cause a temperature-sensitive-folding (tsf) phenotype slowed assembly rates upon increasing the temperature of cell growth. Raising cellular concentrations of GroEL/S increased the rate of assembly of the tsf mutant coat proteins to nearly that of wild-type (WT) coat protein by protecting a thermolabile folding intermediate from aggregation, thereby increasing the concentration of assembly-competent coat protein. The rate of release of thetsf coat proteins from the GroEL/S-coat protein ternary complex was approximately 2-fold slower at non-permissive temperatures when compared with the release of WT coat protein. However, the rate of release of WT or tsf coat proteins at each temperature remained constant regardless of GroEL/S levels. Thus, raising the cellular concentration of GroEL/S increased the amount of assembly-competent tsf coat proteins not by altering the rates of folding but by increasing the probability of GroEL/S-coat protein complex formation.

Collaboration


Dive into the Carolyn M. Teschke's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tina Motwani

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Juliana R. Cortines

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric Anderson

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nadia G. D'Lima

University of Connecticut

View shared research outputs
Researchain Logo
Decentralizing Knowledge