Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alessandro Abbà is active.

Publication


Featured researches published by Alessandro Abbà.


Waste Management | 2011

Recovery of MSWI and soil washing residues as concrete aggregates.

Sabrina Sorlini; Alessandro Abbà; Carlo Collivignarelli

The aim of the present work was to study if municipal solid waste incinerator (MSWI) residues and aggregates derived from contaminated soil washing could be used as alternative aggregates for concrete production. Initially, chemical, physical and geometric characteristics (according to UNI EN 12620) of municipal solid waste incineration bottom ashes and some contaminated soils were evaluated; moreover, the pollutants release was evaluated by means of leaching tests. The results showed that the reuse of pre-treated MSWI bottom ash and washed soil is possible, either from technical or environmental point of view, while it is not possible for the raw wastes. Then, the natural aggregate was partially and totally replaced with these recycled aggregates for the production of concrete mixtures that were characterized by conventional mechanical and leaching tests. Good results were obtained using the same dosage of a high resistance cement (42.5R calcareous Portland cement instead of 32.5R); the concrete mixture containing 400 kg/m(3) of washed bottom ash and high resistance cement was classified as structural concrete (C25/30 class). Regarding the pollutants leaching, all concrete mixtures respected the limit values according to the Italian regulation.


Environmental Technology | 2015

Why use a thermophilic aerobic membrane reactor for the treatment of industrial wastewater/liquid waste?

Maria Cristina Collivignarelli; Alessandro Abbà; Giorgio Bertanza

This paper describes the advantages of thermophilic aerobic membrane reactor (TAMR) for the treatment of high strength wastewaters. The results were obtained from the monitoring of an industrial and a pilot scale plant. The average chemical oxygen demand (COD) removal yield was equal to 78% with an organic loading rate (OLR) up to 8–10 kgCOD m−3 d−1 despite significant scattering of the influent wastewater composition. Total phosphorus (TP) was removed with a rate of 90%, the most important removal mechanism being chemical precipitation (as hydroxyapatite, especially), which is improved by the continuous aeration that promotes phosphorus crystallization. Moreover, surfactants were removed with efficiency between 93% and 97%. Finally, the experimental work showed that thermophilic processes (TPPs) are complementary with respect to mesophilic treatments.


Desalination and Water Treatment | 2016

Reuse of wastewater: a feasible option, or not? A decision support system can solve the doubt

M. Papa; Giorgio Bertanza; Alessandro Abbà

AbstractA wide debate on wastewater reuse has been turning on within the scientific community (and also at the legislative level) for several years. Beyond the undeniable advantages linked to the recovery of a material resource, the typical question plaguing water managers sounds like: “Is this practice feasible, in terms of both technical and economic sustainability?”. To answer their query, we have developed an innovative tool that rates the three actors of the reclamation process (the wastewater treatment plant WWTP, the hydraulic system, and the final user) by means of a waterfall framework based on the following: (i) the definition of meaningful input factors, (ii) the calculation of robust indices, and (iii) the synthesis process up to a final evaluation (numerical values). The model has been successfully applied to several case studies, where the reuse is either already practiced or under study: As a result, the most suitable scenario for reuse (i.e. #1 WWTP), together with the main opportunities (...


Bioresource Technology | 2018

Integrating novel (thermophilic aerobic membrane reactor-TAMR) and conventional (conventional activated sludge-CAS) biological processes for the treatment of high strength aqueous wastes

Maria Cristina Collivignarelli; Alessandro Abbà; Giorgio Bertanza; Massimo Setti; Giacomo Barbieri; Andrea Frattarola

A combination of thermophilic aerobic membrane reactor (TAMR) and conventional activated sludge (CAS) was studied by means of two pilot plants at semi-industrial scale in order to simulate the new configuration adopted in a full-scale facility for the treatment of high strength aqueous wastes. Aqueous wastes with high contents of organic pollutants were treated by means of the TAMR technology, progressively increasing the organic load (3-12 kgCOD m-3 d-1). A mixture of municipal wastewater and thermophilic permeate was fed to the CAS plant. The main results are the following: achievement of a high COD removal yield by both the TAMR (78%) and the CAS (85%) plants; ammonification of the organic nitrogen under thermophilic conditions and subsequent mesophilic nitrification; capacity of the downstream mesophilic process to complete the degradation of the organic matter partially obtained by the TAMR process and precipitation of phosphorus as vivianite and carbonatehydroxylapatite in the TAMR plant.


Water Science and Technology | 2017

Process auditing and performance improvement in a mixed wastewater-aqueous waste treatment plant

Maria Cristina Collivignarelli; Giorgio Bertanza; Alessandro Abbà; Silvestro Damiani

The wastewater treatment process is based on complex chemical, physical and biological mechanisms that are closely interconnected. The efficiency of the system (which depends on compliance with national regulations on wastewater quality) can be achieved through the use of tools such as monitoring, that is the detection of parameters that allow the continuous interpretation of the current situation, and experimental tests, which allow the measurement of real performance (of a sector, a single treatment or equipment) and comparison with the following ones. Experimental tests have a particular relevance in the case of municipal wastewater treatment plants fed with a strong industrial component and especially in the case of plants authorized to treat aqueous waste. In this paper a case study is presented where the application of management tools such as careful monitoring and experimental tests led to the technical and economic optimization of the plant: the main results obtained were the reduction of sludge production (from 4,000 t/year w.w. (wet weight) to about 2,200 t/year w.w.) and operating costs (e.g. from 600,000 €/year down to about 350,000 €/year for reagents), the increase of resource recovery and the improvement of the overall process performance.


Water Science and Technology | 2017

Treatment of high strength aqueous wastes in a thermophilic aerobic membrane reactor (TAMR): performance and resilience

Maria Cristina Collivignarelli; Alessandro Abbà; Giorgio Bertanza; Giacomo Barbieri

In the present work, the thermophilic aerobic membrane reactor technology was studied for the treatment of high strength aqueous wastes mainly containing dyes, surfactants and solvents. The thermophilic biomass resilience and the process stability under critical conditions (such as rapid rise of the mixed liquor pH, oxygen supply interruption, etc.) were also evaluated. The experimental work was carried out with the use of a pilot plant at semi-industrial scale, which was managed throughout for 14 months; the operation temperature was 49 °C and the organic loading rate was increased from 3 to 12 kgCOD m-3 d-1. Critical conditions, especially the interruption of oxygen supply, affected the pilot plant performance but did not cause a complete system break down. After the temporary reduction of process performance, also proven by the decrease in the oxygen consumption, the normal working conditions were restored. Moreover, the longer non-aerated phase involved a significant reduction (40%) of volatile suspended solids concentration in the biological reactor and the increase of 30% in foaming power; nevertheless, once the oxygen supply was reactivated, optimal conditions were rapidly restored. Therefore, the study showed the high resilience of the thermophilic biomass, which was able to recover full functionality after critical events.


Waste Management & Research | 2017

Leaching behaviour of municipal solid waste incineration bottom ash: From granular material to monolithic concrete:

Sabrina Sorlini; Maria Cristina Collivignarelli; Alessandro Abbà

The aim of this work was to assess the leaching behaviour of the bottom ash derived from municipal solid waste incineration (MSWI) used in concrete production. In particular, the release of pollutants was evaluated by the application of different leaching tests, both on granular materials and monolithic samples (concrete mixtures cast with bottom ash). The results confirmed that, according to Italian regulations, unwashed bottom ashes present critical issues for the use as alternative aggregates in the construction sector due to the excessive release of pollutants; instead, the leachate from washed bottom ashes was similar to natural aggregates. The concentration of pollutants in the leachate from concrete mixtures was lower than regulation limits for reuse. The crushing process significantly influenced the release of pollutants: this behaviour was due both to the increase in surface area and the release of contaminants from cement. Moreover, the increase in contact time (up to 64 days) involved more heavy metals to be released.


Journal of Chemistry | 2017

Rheology and Microbiology of Sludge from a Thermophilic Aerobic Membrane Reactor

Alessandro Abbà; Maria Cristina Collivignarelli; Sauro Manenti; Roberta Pedrazzani; Sara Todeschini; Giorgio Bertanza

A thermophilic aerobic membrane reactor (TAMR) treating high-strength COD liquid wastes was submitted to an integrated investigation, with the aim of characterizing the biomass and its rheological behaviour. These processes are still scarcely adopted, also because the knowledge of their biology as well as of the physical-chemical properties of the sludge needs to be improved. In this paper, samples of mixed liquor were taken from a TAMR and submitted to fluorescent in situ hybridization for the identification and quantification of main bacterial groups. Measurements were also targeted at flocs features, filamentous bacteria, and microfauna, in order to characterize the sludge. The studied rheological properties were selected as they influence significantly the performances of membrane bioreactors (MBR) and, in particular, of the TAMR systems that operate under thermophilic conditions (i.e., around 50°C) with high MLSS concentrations (up to 200 gTS L−1). The proper description of the rheological behaviour of sludge represents a useful and fundamental aspect that allows characterizing the hydrodynamics of sludge suspension devoted to the optimization of the related processes. Therefore, in this study, the effects on the sludge rheology produced by the biomass concentration, pH, temperature, and aeration were analysed.


Environmental Technology | 2017

Wastewater treatment by means of thermophilic aerobic membrane reactors: respirometric tests and numerical models for the determination of stoichiometric/kinetic parameters

Maria Cristina Collivignarelli; Giorgio Bertanza; Alessandro Abbà; Vincenzo Torretta; Ioannis A. Katsoyiannis

ABSTRACT Existing wastewater/aqueous waste treatment plants often need to be upgraded in order to improve their performance. The satisfactory operation of biological treatment plants requires appropriate monitoring, and respirometric techniques are needed to determine the kinetic parameters that regulate biological processes. Innovative technologies are treating industrial wastewater/aqueous waste, such as thermophilic aerobic treatments. Thermophilic aerobic biological systems operate at temperatures higher than 45°C. Such temperature levels can be reached, at a reasonable cost, using wastewater with a high organic loading and reactors, which are appropriately thermally insulated. This kind of treatment shows high removal kinetics of biodegradable substrates and a very low sludge production. This paper describes the application of respirometric tests in thermophilic conditions on the biomass derived from a thermophilic aerobic membrane reactor in order to model the process, with a particular focus on the rapidly biodegradable chemical oxygen demand (rbCOD). The utility of rbCOD determination is related to the optimal treatment that the aqueous waste should undergo. Calculating the kinetic parameters is critical to the biological modelling used in the management and control of wastewater treatment plants.


International Journal of Environmental Science and Technology | 2018

Troubleshooting in a full-scale wastewater treatment plant: what can be learnt from tracer tests

Maria Cristina Collivignarelli; Giorgio Bertanza; Alessandro Abbà; S. Damiani

The experimental assessment of the actual reactor hydrodynamic behavior is aimed at detecting possible deviations from the design configuration, as well as suggesting corrective/improving modifications, efficacy of which can be also assessed in the aftermath. The hydrodynamic scheme can be defined by means of tracer tests (stimulus–response method) used for detecting the residence time distribution curve. This study shows the results of three hydrodynamic tests performed on a wastewater treatment plant half-line, in which a biological process (denitrification and oxidation–nitrification) is carried out. Hydrodynamic faults (in terms of dead space and/or flow bypass) were identified, and consequent actions suggested (i.e., change in submerged mixers orientation in the reactors; sinking of the final section of the sludge recirculation pipe below the free surface to avoid foaming phenomena; introduction of new mixed liquor recirculation lines). These actions, together with a careful selection of wastes to be treated, led to an improvement of the overall process performance.

Collaboration


Dive into the Alessandro Abbà's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge