Alessandro Didonna
University of California, San Francisco
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alessandro Didonna.
Annals of clinical and translational neurology | 2015
Alessandro Didonna; Puneet Opal
Histone deacetylases (HDACs) represent emerging therapeutic targets in the context of neurodegeneration. Indeed, pharmacologic inhibition of HDACs activity in the nervous system has shown beneficial effects in several preclinical models of neurological disorders. However, the translation of such therapeutic approach to clinics has been only marginally successful, mainly due to our still limited knowledge about HDACs physiological role particularly in neurons. Here, we review the potential benefits along with the risks of targeting HDACs in light of what we currently know about HDAC activity in the brain.
Human Molecular Genetics | 2014
Anand Venkatraman; Yuan Shih Hu; Alessandro Didonna; Marija Cvetanovic; Aleksandar Krbanjevic; Patrice Bilesimo; Puneet Opal
Spinocerebellar ataxia type 1 (SCA1) is an incurable neurodegenerative disease caused by a pathogenic glutamine repeat expansion in the protein ataxin-1 (ATXN1). One likely mechanism mediating pathogenesis is excessive transcriptional repression induced by the expanded ATXN-1. Because ATXN1 binds HDAC3, a Class I histone deacetylase (HDAC) that we have found to be required for ATXN1-induced transcriptional repression, we tested whether genetically depleting HDAC3 improves the phenotype of the SCA1 knock-in mouse (SCA1(154Q/2Q)), the most physiologically relevant model of SCA1. Given that HDAC3 null mice are embryonic lethal, we used for our analyses a combination of HDAC3 haploinsufficient and Purkinje cell (PC)-specific HDAC3 null mice. Although deleting a single allele of HDAC3 in the context of SCA1 was insufficient to improve cerebellar and cognitive deficits of the disease, a complete loss of PC HDAC3 was highly deleterious both behaviorally, with mice showing early onset ataxia, and pathologically, with progressive histologic evidence of degeneration. Inhibition of HDAC3 may yet have a role in SCA1 therapy, but our study provides cautionary evidence that this approach could produce untoward effects. Indeed, the neurotoxic consequences of HDAC3 depletion could prove relevant, wherever pharmacologic inhibition of HDAC3 is being contemplated, in disorders ranging from cancer to neurodegeneration.
ACS Chemical Neuroscience | 2011
Alessandro Didonna; Lisa Vaccari; Alpan Bek; Giuseppe Legname
Prion diseases are a group of fatal neurodegenerative disorders characterized by the accumulation of prions in the central nervous system. The pathogenic prion (PrP(Sc)) possesses the capability to convert the host-encoded cellular isoform of the prion protein, PrP(C), into nascent PrP(Sc). The present work aims at providing novel insight into cellular response upon prion infection evidenced by synchrotron radiation infrared microspectroscopy (SR-IRMS). This non-invasive, label-free analytical technique was employed to investigate the biochemical perturbations undergone by prion infected mouse hypothalamic GT1-1 cells at the cellular and subcellular level. A decrement in total cellular protein content upon prion infection was identified by infrared (IR) whole-cell spectra and validated by bicinchoninic acid assay and single-cell volume analysis by atomic force microscopy (AFM). Hierarchical cluster analysis (HCA) of IR data discriminated between infected and uninfected cells and allowed to deduce an increment of lysosomal bodies within the cytoplasm of infected GT1-1 cells, a hypothesis further confirmed by SR-IRMS at subcellular spatial resolution and fluorescent microscopy. The purpose of this work, therefore, consists of proposing IRMS as a powerful multiscreening platform, drawing on the synergy with conventional biological assays and microscopy techniques in order to increase the accuracy of investigations performed at the single-cell level.
Clinica Chimica Acta | 2015
Alessandro Didonna; Jorge R. Oksenberg
Multiple sclerosis (MS) is an autoimmune disease that represents a primary cause of neurological disability in the young adult population. Converging evidence supports the importance of genetic determinants for MS etiology. However, with the exception of the major histocompatibility complex, their nature has been elusive for more than 20 years. In the last decade, the advent of large genome-wide association studies has significantly improved our understanding of the disease, leading to the golden era of MS genetic research. To date more than 110 genetic variants have been firmly associated to an increased risk of developing MS. A large part of these variants tag genes involved in the regulation of immune response and several of them are shared with other autoimmune diseases, suggesting a common etiological root for this class of disorders. Despite the impressive body of data obtained in the last years, we are still far from fully decoding MS genetic complexity. For example, we ignore how these genetic factors interact with each other and with the environment. Thus, the biggest challenge for the next era of MS research will consist in identifying and characterizing the molecular mechanisms and the cellular pathways in which these risk variants play a role.
Cellular & Molecular Biology Letters | 2013
Alessandro Didonna
Prion diseases are a class of fatal neurodegenerative disorders that can be sporadic, genetic or iatrogenic. They are characterized by the unique nature of their etiologic agent: prions (PrPSc). A prion is an infectious protein with the ability to convert the host-encoded cellular prion protein (PrPC) into new prion molecules by acting as a template. Since Stanley B. Prusiner proposed the “protein-only” hypothesis for the first time, considerable effort has been put into defining the role played by PrPC in neurons. However, its physiological function remains unclear. This review summarizes the major findings that support the involvement of PrPC in signal transduction.
JAMA Neurology | 2016
Alessandro Didonna; Puneet Opal
Importance The hereditary progressive ataxias comprise genetic disorders that affect the cerebellum and its connections. Even though these diseases historically have been among the first familial disorders of the nervous system to have been recognized, progress in the field has been challenging because of the large number of ataxic genetic syndromes, many of which overlap in their clinical features. Observations We have taken a historical approach to demonstrate how our knowledge of the genetic basis of ataxic disorders has come about by novel techniques in gene sequencing and bioinformatics. Furthermore, we show that the genes implicated in ataxia, although seemingly unrelated, appear to encode for proteins that interact with each other in connected functional modules. Conclusions and Relevance It has taken approximately 150 years for neurologists to comprehensively unravel the genetic diversity of ataxias. There has been an explosion in our understanding of their molecular basis with the arrival of next-generation sequencing and computer-driven bioinformatics; this in turn has made hereditary ataxias an especially well-developed model group of diseases for gaining insights at a systems level into genes and cellular pathways that result in neurodegeneration.
Prion | 2012
Alessandro Didonna; Joshua Sussman; Federico Benetti; Giuseppe Legname
Doppel (Dpl) protein is a paralog of the prion protein (PrP) that shares 25% sequence similarity with the C-terminus of PrP, a common N-glycosylation site and a C-terminal signal peptide for attachment of a glycosylphophatidyl inositol anchor. Whereas PrPC is highly expressed in the central nervous system (CNS), Dpl is detected mostly in testes and its ectopic expression in the CNS leads to ataxia as well as Purkinje and granule cell degeneration in the cerebellum. The mechanism through which Dpl induces neurotoxicity is still debated. In the present work, primary neuronal cultures derived from postnatal cerebellar granule cells of wild-type and PrP-knockout FVB mice were used in order to investigate the molecular events that occur upon exposure to Dpl. Treatment of cultured cerebellar neurons with recombinant Dpl produced apoptosis that could be prevented by PrP co-incubation. When primary neuronal cultures from Bax-deficient mice were incubated with Dpl, no apoptosis was observed, suggesting an important role of Bax in triggering neurodegeneration. Similarly, cell survival increased when recDpl-treated cells were incubated with an inhibitor of caspase-3, which mediates apoptosis in mammalian cells. Together, our findings raise the possibility that Bax and caspase-3 feature in Dpl-mediated apoptosis.
Human Molecular Genetics | 2015
Alessandro Didonna; Noriko Isobe; Stacy J. Caillier; Kathy H. Li; Alma L. Burlingame; Stephen L. Hauser; Sergio E. Baranzini; Nikolaos A. Patsopoulos; Jorge R. Oksenberg
Despite recent progress in the characterization of genetic loci associated with multiple sclerosis (MS) risk, the ubiquitous linkage disequilibrium operating across the genome has stalled efforts to distinguish causative variants from proxy single-nucleotide polymorphisms (SNPs). Here, we have identified through fine mapping and meta-analysis EVI5 as the most plausible disease risk gene within the 1p22.1 locus. We further show that an exonic SNP associated with risk induces changes in superficial hydrophobicity patterns of the coiled-coil domain of EVI5, which, in turns, affects the EVI5 interactome. Immunoprecipitation of wild-type and mutated EVI5 followed by mass spectrometry generated a roster of disease-specific interactors functionally linked to lipid metabolism. Among the exclusive binding partners of the risk variant, we describe the novel interaction with sphingosine 1-phosphate lyase (SGPL1)-a key enzyme for the creation of the sphingosine-1 phosphate gradient, which is relevant to the pathogenic process and therapeutic management of MS.
Molecular Neurodegeneration | 2010
Alessandro Didonna; Giuseppe Legname
BackgroundFatal neurodegenerative disorders such as Creutzfeldt-Jakob and Gerstmann-Sträussler-Scheinker diseases in humans, scrapie and bovine spongiform encephalopathy in animals, are characterized by the accumulation in the brain of a pathological form of the prion protein (PrP) denominated PrPSc. The latter derives from the host cellular form, PrPC, through a process whereby portions of its α-helical and coil structures are refolded into β-sheet structures.ResultsIn this work, the widely known in vitro model of prion replication, hypothalamic GT1-1 cell line, was used to investigate cellular and molecular responses to prion infection. The MAP kinase cascade was dissected to assess the phosphorylation levels of src, MEK 1/2 and ERK 1/2 signaling molecules, both before and after prion infection. Our findings suggest that prion replication leads to a hyper-activation of this pathway. Biochemical analysis was complemented with immunofluorescence studies to map the localization of the ERK complex within the different cellular compartments. We showed how the ERK complex relocates in the cytosol upon prion infection. We correlated these findings with an impairment of cell growth in prion-infected GT1-1 cells as probed by MTT assay. Furthermore, given the persistent urgency in finding compounds able to cure prion infected cells, we tested the effects on the ERK cascade of two molecules known to block prion replication in vitro, quinacrine and Fab D18. We were able to show that while these two compounds possess similar effects in curing prion infection, they affect the MAP kinase cascade differently.ConclusionsTaken together, our results help shed light on the molecular events involved in neurodegeneration and neuronal loss in prion infection and replication. In particular, the combination of chronic activation and aberrant localization of the ERK complex may lead to a lack of essential neuroprotective and survival factors. Interestingly, these data seem to define some common traits with other neurodegenerative disorders such as, for example, Alzheimers disease.
Proceedings of the National Academy of Sciences of the United States of America | 2017
Caroline Guglielmetti; Chloe Najac; Alessandro Didonna; Annemie Van der Linden; Sabrina M. Ronen; Myriam M. Chaumeil
Significance Cells from the innate immune system, namely microglia and macrophages (mononuclear phagocytes, MPs), play a central role in the progression of neurological disorders such as multiple sclerosis. Such cells can contribute to lesion formations (proinflammatory) or participate in remyelinating processes (neuroprotective). When differentiated to a proinflammatory phenotype, MPs experience metabolic reprogramming leading to increased glycolysis and production of lactate. In this study we showed that a new metabolic imaging method, namely 13C magnetic resonance spectroscopic imaging (MRSI) of hyperpolarized pyruvate, can detect increased lactate production from proinflammatory MPs, a mechanism mediated by pyruvate dehydrogenase kinase 1 upregulation, in a preclinical model of multiple sclerosis. These findings validate the potential of 13C MRSI of hyperpolarized pyruvate for in vivo detection of neuroinflammation. Proinflammatory mononuclear phagocytes (MPs) play a crucial role in the progression of multiple sclerosis (MS) and other neurodegenerative diseases. Despite advances in neuroimaging, there are currently limited available methods enabling noninvasive detection of MPs in vivo. Interestingly, upon activation and subsequent differentiation toward a proinflammatory phenotype MPs undergo metabolic reprogramming that results in increased glycolysis and production of lactate. Hyperpolarized (HP) 13C magnetic resonance spectroscopic imaging (MRSI) is a clinically translatable imaging method that allows noninvasive monitoring of metabolic pathways in real time. This method has proven highly useful to monitor the Warburg effect in cancer, through MR detection of increased HP [1-13C]pyruvate-to-lactate conversion. However, to date, this method has never been applied to the study of neuroinflammation. Here, we questioned the potential of 13C MRSI of HP [1-13C]pyruvate to monitor the presence of neuroinflammatory lesions in vivo in the cuprizone mouse model of MS. First, we demonstrated that 13C MRSI could detect a significant increase in HP [1-13C]pyruvate-to-lactate conversion, which was associated with a high density of proinflammatory MPs. We further demonstrated that the increase in HP [1-13C]lactate was likely mediated by pyruvate dehydrogenase kinase 1 up-regulation in activated MPs, resulting in regional pyruvate dehydrogenase inhibition. Altogether, our results demonstrate a potential for 13C MRSI of HP [1-13C]pyruvate as a neuroimaging method for assessment of inflammatory lesions. This approach could prove useful not only in MS but also in other neurological diseases presenting inflammatory components.