Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alessandro Giacomello is active.

Publication


Featured researches published by Alessandro Giacomello.


Circulation Research | 2004

Isolation and Expansion of Adult Cardiac Stem Cells From Human and Murine Heart

Elisa Messina; Luciana De Angelis; Giacomo Frati; Stefania Morrone; Stefano Chimenti; Fabio Fiordaliso; Monica Salio; Massimo Battaglia; Michael V.G. Latronico; Marcello Coletta; Elisabetta Vivarelli; Luigi Frati; Giulio Cossu; Alessandro Giacomello

Cardiac myocytes have been traditionally regarded as terminally differentiated cells that adapt to increased work and compensate for disease exclusively through hypertrophy. However, in the past few years, compelling evidence has accumulated suggesting that the heart has regenerative potential. Recent studies have even surmised the existence of resident cardiac stem cells, endothelial cells generating cardiomyocytes by cell contact or extracardiac progenitors for cardiomyocytes, but these findings are still controversial. We describe the isolation of undifferentiated cells that grow as self-adherent clusters (that we have termed “cardiospheres”) from subcultures of postnatal atrial or ventricular human biopsy specimens and from murine hearts. These cells are clonogenic, express stem and endothelial progenitor cell antigens/markers, and appear to have the properties of adult cardiac stem cells. They are capable of long-term self-renewal and can differentiate in vitro and after ectopic (dorsal subcutaneous connective tissue) or orthotopic (myocardial infarction) transplantation in SCID beige mouse to yield the major specialized cell types of the heart: myocytes (ie, cells demonstrating contractile activity and/or showing cardiomyocyte markers) and vascular cells (ie, cells with endothelial or smooth muscle markers).


Circulation | 2007

Regenerative Potential of Cardiosphere-Derived Cells Expanded From Percutaneous Endomyocardial Biopsy Specimens

Rachel R. Smith; Lucio Barile; Hee Cheol Cho; Michelle K. Leppo; Joshua M. Hare; Elisa Messina; Alessandro Giacomello; M. Roselle Abraham; Eduardo Marbán

Background— Ex vivo expansion of resident cardiac stem cells, followed by delivery to the heart, may favor regeneration and functional improvement. Methods and Results— Percutaneous endomyocardial biopsy specimens grown in primary culture developed multicellular clusters known as cardiospheres, which were plated to yield cardiosphere-derived cells (CDCs). CDCs from human biopsy specimens and from comparable porcine samples were examined in vitro for biophysical and cytochemical evidence of cardiogenic differentiation. In addition, human CDCs were injected into the border zone of acute myocardial infarcts in immunodeficient mice. Biopsy specimens from 69 of 70 patients yielded cardiosphere-forming cells. Cardiospheres and CDCs expressed antigenic characteristics of stem cells at each stage of processing, as well as proteins vital for cardiac contractile and electrical function. Human and porcine CDCs cocultured with neonatal rat ventricular myocytes exhibited biophysical signatures characteristic of myocytes, including calcium transients synchronous with those of neighboring myocytes. Human CDCs injected into the border zone of myocardial infarcts engrafted and migrated into the infarct zone. After 20 days, the percentage of viable myocardium within the infarct zone was greater in the CDC-treated group than in the fibroblast-treated control group; likewise, left ventricular ejection fraction was higher in the CDC-treated group. Conclusions— A method is presented for the isolation of adult human stem cells from endomyocardial biopsy specimens. CDCs are cardiogenic in vitro; they promote cardiac regeneration and improve heart function in a mouse infarct model, which provides motivation for further development for therapeutic applications in patients.


Circulation Research | 2010

Relative Roles of Direct Regeneration Versus Paracrine Effects of Human Cardiosphere-Derived Cells Transplanted Into Infarcted Mice

Isotta Chimenti; Rachel R. Smith; Tao-Sheng Li; Gary Gerstenblith; Elisa Messina; Alessandro Giacomello; Eduardo Marbán

Rationale: Multiple biological mechanisms contribute to the efficacy of cardiac cell therapy. Most prominent among these are direct heart muscle and blood vessel regeneration from transplanted cells, as opposed to paracrine enhancement of tissue preservation and/or recruitment of endogenous repair. Objective: Human cardiac progenitor cells, cultured as cardiospheres (CSps) or as CSp-derived cells (CDCs), have been shown to be capable of direct cardiac regeneration in vivo. Here we characterized paracrine effects in CDC transplantation and investigated their relative importance versus direct differentiation of surviving transplanted cells. Methods and Results: In vitro, many growth factors were found in media conditioned by human adult CSps and CDCs; CDC-conditioned media exerted antiapoptotic effects on neonatal rat ventricular myocytes, and proangiogenic effects on human umbilical vein endothelial cells. In vivo, human CDCs secreted vascular endothelial growth factor, hepatocyte growth factor, and insulin-like growth factor 1 when transplanted into the same SCID mouse model of acute myocardial infarction where they were previously shown to improve function and to produce tissue regeneration. Injection of CDCs in the peri-infarct zone increased the expression of Akt, decreased apoptotic rate and caspase 3 level, and increased capillary density, indicating overall higher tissue resilience. Based on the number of human-specific cells relative to overall increases in capillary density and myocardial viability, direct differentiation quantitatively accounted for 20% to 50% of the observed effects. Conclusions: Together with their spontaneous commitment to cardiac and angiogenic differentiation, transplanted CDCs serve as “role models,” recruiting endogenous regeneration and improving tissue resistance to ischemic stress. The contribution of the role model effect rivals or exceeds that of direct regeneration.


Biomaterials | 2012

Cardiac tissue engineering using tissue printing technology and human cardiac progenitor cells.

Roberto Gaetani; P. A. Doevendans; Corina H.G. Metz; Jacqueline Alblas; Elisa Messina; Alessandro Giacomello; Joost P.G. Sluijter

Tissue engineering is emerging as a potential therapeutic approach to overcome limitations of cell therapy, like cell retention and survival, as well as to mechanically support the ventricular wall and thereby prevent dilation. Tissue printing technology (TP) offers the possibility to deliver, in a defined and organized manner, scaffolding materials and living cells. The aim of our study was to evaluate the combination of TP, human cardiac-derived cardiomyocyte progenitor cells (hCMPCs) and biomaterials to obtain a construct with cardiogenic potential for in vitro use or in vivo application. With this approach, we were able to generate an in vitro tissue with homogenous distribution of cells in the scaffold. Cell viability was determined after printing and showed that 92% and 89% of cells were viable at 1 and 7 days of culturing, respectively. Moreover, we demonstrated that printed hCMPCs retained their commitment for the cardiac lineage. In particular, we showed that 3D culture enhanced gene expression of the early cardiac transcription factors Nkx2.5, Gata-4 and Mef-2c as well as the sarcomeric protein TroponinT. Printed cells were also able to migrate from the alginate matrix and colonize a matrigel layer, thereby forming tubular-like structures. This indicated that printing can be used for defined cell delivery, while retaining functional properties.


Nature Reviews Cardiology | 2007

Cardiac stem cells: isolation, expansion and experimental use for myocardial regeneration

Lucio Barile; Isotta Chimenti; Roberto Gaetani; Elvira Forte; Fabio Miraldi; Giacomo Frati; Elisa Messina; Alessandro Giacomello

Cellular cardiomyoplasty (myogenic cell grafting) is actively being explored as a novel method to regenerate damaged myocardium. The adult human heart contains small populations of indigenous committed cardiac stem cells or multipotent cardiac progenitor cells, identified by their cell-surface expression of c-kit (the receptor for stem cell factor), P-glycoprotein (a member of the multidrug resistance protein family), and Sca-1 (stem cell antigen 1, a mouse hematopoietic stem cell marker) or a Sca-1-like protein. Cardiac stem cells represent a logical source to exploit in cardiac regeneration therapy because, unlike other adult stem cells, they are likely to be intrinsically programmed to generate cardiac tissue in vitro and to increase cardiac tissue viability in vitro. Cardiac stem cell therapy could, therefore, change the fundamental approach to the treatment of heart disease.


Cardiovascular Research | 2009

Differentiation of human adult cardiac stem cells exposed to extremely low-frequency electromagnetic fields

Roberto Gaetani; Mario Ledda; Lucio Barile; Isotta Chimenti; Flavia De Carlo; Elvira Forte; Vittoria Ionta; Livio Giuliani; Enrico D'Emilia; Giacomo Frati; Fabio Miraldi; D. Pozzi; Elisa Messina; Settimio Grimaldi; Alessandro Giacomello; Antonella Lisi

AIMS Modulation of cardiac stem cell (CSC) differentiation with minimal manipulation is one of the main goals of clinical applicability of cell therapy for heart failure. CSCs, obtained from human myocardial bioptic specimens and grown as cardiospheres (CSps) and cardiosphere-derived cells (CDCs), can engraft and partially regenerate the infarcted myocardium, as previously described. In this paper we assessed the hypothesis that exposure of CSps and CDCs to extremely low-frequency electromagnetic fields (ELF-EMFs), tuned at Ca2+ ion cyclotron energy resonance (Ca2+-ICR), may drive their differentiation towards a cardiac-specific phenotype. METHODS AND RESULTS A significant increase in the expression of cardiac markers was observed after 5 days of exposure to Ca2+-ICR in both human CSps and CDCs, as evidenced at transcriptional, translational, and phenotypical levels. Ca2+ mobilization among intracellular storages was observed and confirmed by compartmentalized analysis of Ca2+ fluorescent probes. CONCLUSIONS These results suggest that ELF-EMFs tuned at Ca2+-ICR could be used to drive cardiac-specific differentiation in adult cardiac progenitor cells without any pharmacological or genetic manipulation of the cells that will be used for therapeutic purposes.


PLOS ONE | 2011

Cardiosphere-derived cells improve function in the infarcted rat heart for at least 16 weeks--an MRI study.

Carolyn A. Carr; Daniel J. Stuckey; Jun Jie Tan; Suat Cheng Tan; Renata S. M. Gomes; Patrizia Camelliti; Elisa Messina; Alessandro Giacomello; Georgina M. Ellison; Kieran Clarke

Aims Endogenous cardiac progenitor cells, expanded from explants via cardiosphere formation, present a promising cell source to prevent heart failure following myocardial infarction. Here we used cine-magnetic resonance imaging (MRI) to track administered cardiosphere-derived cells (CDCs) and to measure changes in cardiac function over four months in the infarcted rat heart. Methods and Results CDCs, cultured from neonatal rat heart, comprised a heterogeneous population including cells expressing the mesenchymal markers CD90 and CD105, the stem cell marker c-kit and the pluripotency markers Sox2, Oct3/4 and Klf-4. CDCs (2×106) expressing green fluorescent protein (GFP+) were labelled with fluorescent micron-sized particles of iron oxide (MPIO). Labelled cells were administered to the infarcted rat hearts (n = 7) by intramyocardial injection immediately following reperfusion, then by systemic infusion (4×106) 2 days later. A control group (n = 7) was administered cell medium. MR hypointensities caused by the MPIOs were detected at all times and GFP+ cells containing MPIO particles were identified in tissue slices at 16 weeks. At two days after infarction, cardiac function was similar between groups. By 6 weeks, ejection fractions in control hearts had significantly decreased (47±2%), but this was not evident in CDC-treated hearts (56±3%). The significantly higher ejection fractions in the CDC-treated group were maintained for a further 10 weeks. In addition, CDC-treated rat hearts had significantly increased capillary density in the peri-infarct region and lower infarct sizes. MPIO-labelled cells also expressed cardiac troponin I, von Willebrand factor and smooth muscle actin, suggesting their differentiation along the cardiomyocyte lineage and the formation of new blood vessels. Conclusions CDCs were retained in the infarcted rat heart for 16 weeks and improved cardiac function.


Stem cell reports | 2015

SHOX2 Overexpression Favors Differentiation of Embryonic Stem Cells into Cardiac Pacemaker Cells, Improving Biological Pacing Ability

Vittoria Ionta; Wenbin Liang; Elizabeth H. Kim; Reza Rafie; Alessandro Giacomello; Eduardo Marbán; Hee Cheol Cho

Summary When pluripotency factors are removed, embryonic stem cells (ESCs) undergo spontaneous differentiation, which, among other lineages, also gives rise to cardiac sublineages, including chamber cardiomyocytes and pacemaker cells. Such heterogeneity complicates the use of ESC-derived heart cells in therapeutic and diagnostic applications. We sought to direct ESCs to differentiate specifically into cardiac pacemaker cells by overexpressing a transcription factor critical for embryonic patterning of the native cardiac pacemaker (the sinoatrial node). Overexpression of SHOX2 during ESC differentiation upregulated the pacemaker gene program, resulting in enhanced automaticity in vitro and induced biological pacing upon transplantation in vivo. The accentuated automaticity is accompanied by temporally evolving changes in the effectors and regulators of Wnt signaling. Our findings provide a strategy for enriching the cardiac pacemaker cell population from ESCs.


Biomaterials | 2011

Human cardiosphere-seeded gelatin and collagen scaffolds as cardiogenic engineered bioconstructs

Isotta Chimenti; Giuseppe Rizzitelli; Roberto Gaetani; Francesco Angelini; Vittoria Ionta; Elvira Forte; Giacomo Frati; Olivier Schussler; Andrea Barbetta; Elisa Messina; Mariella Dentini; Alessandro Giacomello

Cardiac tissue engineering (CTE) aims at regenerating damaged myocardium by combining cells to a biocompatible and/or bioactive matrix. Collagen and gelatin are among the most suitable materials used today for CTE approaches. In this study we compared the structural and biological features of collagen (C-RGD) or gelatin (G-FOAM)-based bioconstructs, seeded with human adult cardiac progenitor cells in the form of cardiospheres (CSps). The different morphology between C-RGD (fibrous ball-of-thread-like) and G-FOAM (trabecular sponge-like) was evidenced by SEM analysis and X-ray micro-tomography, and was reflected by their different mechanical characteristics. Seeded cells were viable and proliferating after 1 week in culture, and a reduced expression of cell-stress markers versus standard CSp culture was detected by realtime PCR. Cell engraftment inside the scaffolds was assessed by SEM microscopy and histology, evidencing more relevant cell migration and production of extracellular matrix in C-RGD versus G-FOAM. Immunofluorescence and realtime PCR analysis showed down-regulation of vascular and stemness markers, while early-to-late cardiac markers were consistently and significantly upregulated in G-FOAM and C-RGD compared to standard CSps culture, suggesting selective commitment towards cardiomyocytes. Overall our results suggest that CSp-bioconstructs have suitable mechanical properties and improved survival and cardiogenic properties, representing promising tools for CTE.


Stem Cells and Development | 2012

TGFβ-Dependent Epithelial-to-Mesenchymal Transition Is Required to Generate Cardiospheres from Human Adult Heart Biopsies

Elvira Forte; Fabio Miraldi; Isotta Chimenti; Francesco Angelini; Ann Zeuner; Alessandro Giacomello; Mark Mercola; Elisa Messina

Autologous cardiac progenitor cells (CPCs) isolated as cardiospheres (CSps) represent a promising candidate for cardiac regenerative therapy. A better understanding of the origin and mechanisms underlying human CSps formation and maturation is undoubtedly required to enhance their cardiomyogenic potential. Epithelial-to-mesenchymal transition (EMT) is a key morphogenetic process that is implicated in the acquisition of stem cell-like properties in different adult tissues, and it is activated in the epicardium after ischemic injury to the heart. We investigated whether EMT is involved in the formation and differentiation of human CSps, revealing that an up-regulation of the expression of EMT-related genes accompanies CSps formation that is relative to primary explant-derived cells and CSp-derived cells grown in a monolayer. EMT and CSps formation is enhanced in the presence of transforming growth factor β1 (TGFβ1) and drastically blocked by the type I TGFβ-receptor inhibitor SB431452, indicating that TGFβ-dependent EMT is essential for the formation of these niche-like 3D-multicellular clusters. Since TGFβ is activated in the myocardium in response to injury, our data suggest that CSps formation mimics an adaptive mechanism that could potentially be enhanced to increase in vivo or ex vivo regenerative potential of adult CPCs.

Collaboration


Dive into the Alessandro Giacomello's collaboration.

Top Co-Authors

Avatar

Elisa Messina

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Isotta Chimenti

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Lucio Barile

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Giacomo Frati

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Elvira Forte

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Francesco Angelini

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Eduardo Marbán

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Vittoria Ionta

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Fabio Miraldi

Sapienza University of Rome

View shared research outputs
Researchain Logo
Decentralizing Knowledge