Isotta Chimenti
Sapienza University of Rome
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Isotta Chimenti.
Circulation Research | 2010
Isotta Chimenti; Rachel R. Smith; Tao-Sheng Li; Gary Gerstenblith; Elisa Messina; Alessandro Giacomello; Eduardo Marbán
Rationale: Multiple biological mechanisms contribute to the efficacy of cardiac cell therapy. Most prominent among these are direct heart muscle and blood vessel regeneration from transplanted cells, as opposed to paracrine enhancement of tissue preservation and/or recruitment of endogenous repair. Objective: Human cardiac progenitor cells, cultured as cardiospheres (CSps) or as CSp-derived cells (CDCs), have been shown to be capable of direct cardiac regeneration in vivo. Here we characterized paracrine effects in CDC transplantation and investigated their relative importance versus direct differentiation of surviving transplanted cells. Methods and Results: In vitro, many growth factors were found in media conditioned by human adult CSps and CDCs; CDC-conditioned media exerted antiapoptotic effects on neonatal rat ventricular myocytes, and proangiogenic effects on human umbilical vein endothelial cells. In vivo, human CDCs secreted vascular endothelial growth factor, hepatocyte growth factor, and insulin-like growth factor 1 when transplanted into the same SCID mouse model of acute myocardial infarction where they were previously shown to improve function and to produce tissue regeneration. Injection of CDCs in the peri-infarct zone increased the expression of Akt, decreased apoptotic rate and caspase 3 level, and increased capillary density, indicating overall higher tissue resilience. Based on the number of human-specific cells relative to overall increases in capillary density and myocardial viability, direct differentiation quantitatively accounted for 20% to 50% of the observed effects. Conclusions: Together with their spontaneous commitment to cardiac and angiogenic differentiation, transplanted CDCs serve as “role models,” recruiting endogenous regeneration and improving tissue resistance to ischemic stress. The contribution of the role model effect rivals or exceeds that of direct regeneration.
Nature Reviews Cardiology | 2007
Lucio Barile; Isotta Chimenti; Roberto Gaetani; Elvira Forte; Fabio Miraldi; Giacomo Frati; Elisa Messina; Alessandro Giacomello
Cellular cardiomyoplasty (myogenic cell grafting) is actively being explored as a novel method to regenerate damaged myocardium. The adult human heart contains small populations of indigenous committed cardiac stem cells or multipotent cardiac progenitor cells, identified by their cell-surface expression of c-kit (the receptor for stem cell factor), P-glycoprotein (a member of the multidrug resistance protein family), and Sca-1 (stem cell antigen 1, a mouse hematopoietic stem cell marker) or a Sca-1-like protein. Cardiac stem cells represent a logical source to exploit in cardiac regeneration therapy because, unlike other adult stem cells, they are likely to be intrinsically programmed to generate cardiac tissue in vitro and to increase cardiac tissue viability in vitro. Cardiac stem cell therapy could, therefore, change the fundamental approach to the treatment of heart disease.
Cardiovascular Research | 2009
Roberto Gaetani; Mario Ledda; Lucio Barile; Isotta Chimenti; Flavia De Carlo; Elvira Forte; Vittoria Ionta; Livio Giuliani; Enrico D'Emilia; Giacomo Frati; Fabio Miraldi; D. Pozzi; Elisa Messina; Settimio Grimaldi; Alessandro Giacomello; Antonella Lisi
AIMS Modulation of cardiac stem cell (CSC) differentiation with minimal manipulation is one of the main goals of clinical applicability of cell therapy for heart failure. CSCs, obtained from human myocardial bioptic specimens and grown as cardiospheres (CSps) and cardiosphere-derived cells (CDCs), can engraft and partially regenerate the infarcted myocardium, as previously described. In this paper we assessed the hypothesis that exposure of CSps and CDCs to extremely low-frequency electromagnetic fields (ELF-EMFs), tuned at Ca2+ ion cyclotron energy resonance (Ca2+-ICR), may drive their differentiation towards a cardiac-specific phenotype. METHODS AND RESULTS A significant increase in the expression of cardiac markers was observed after 5 days of exposure to Ca2+-ICR in both human CSps and CDCs, as evidenced at transcriptional, translational, and phenotypical levels. Ca2+ mobilization among intracellular storages was observed and confirmed by compartmentalized analysis of Ca2+ fluorescent probes. CONCLUSIONS These results suggest that ELF-EMFs tuned at Ca2+-ICR could be used to drive cardiac-specific differentiation in adult cardiac progenitor cells without any pharmacological or genetic manipulation of the cells that will be used for therapeutic purposes.
BioMed Research International | 2015
Camilla Siciliano; Isotta Chimenti; Antonella Bordin; Donatella Ponti; Paola Iudicone; Mariangela Peruzzi; Erino A. Rendina; Antonella Calogero; Luca Pierelli; Mohsen Ibrahim; Elena De Falco
Human adipose tissue-derived mesenchymal stem cells (ADMSCs) are considered eligible candidates for cardiovascular stem cell therapy applications due to their cardiac transdifferentiation potential and immunotolerance. Over the years, the in vitro culture of ADMSCs by platelet lysate (PL), a hemoderivate containing numerous growth factors and cytokines derived from platelet pools, has allowed achieving a safe and reproducible methodology to obtain high cell yield prior to clinical administration. Nevertheless, the biological properties of PL are still to be fully elucidated. In this brief report we show the potential ability of PL to induce a permissive state of cardiac-like transdifferentiation and to cause epigenetic modifications. RTPCR results indicate an upregulation of Cx43, SMA, c-kit, and Thy-1 confirmed by immunofluorescence staining, compared to standard cultures with foetal bovine serum. Moreover, PL-cultured ADMSCs exhibit a remarkable increase of both acetylated histones 3 and 4, with a patient-dependent time trend, and methylation at lysine 9 on histone 3 preceding the acetylation. Expression levels of p300 and SIRT-1, two major regulators of histone 3, are also upregulated after treatment with PL. In conclusion, PL could unravel novel biological properties beyond its routine employment in noncardiac applications, providing new insights into the plasticity of human ADMSCs.
Proteomics | 2010
Miroslava Stastna; Isotta Chimenti; Eduardo Marbán; Jennifer E. Van Eyk
In the heart, the proteomes secreted by both cardiac stem cells (CSCs) and cardiac myocytes could act synergistically, but the identification and functionality of the proteins comprising the individual secretomes have not yet been described. In this study, we have identified proteins present in the media obtained from cultured rat CSCs and from cultured neonatal rat ventricular myocytes (NRVMs) and compared them with proteins identified in the media alone. Briefly, 83 unique proteins were identified after analysis by RPLC and MS. In total 49 and 23% were NRVM‐specific or CSC‐specific proteins, respectively, and 63% of total 83 proteins were integral plasma membrane and/or known secreted proteins. Fifteen proteins met our criteria for paracrine/autocrine factors: (i) robust protein identification, (ii) cell specific and (iii) known to be secreted. Most of these proteins have not been previously linked to stem cells. NRVM‐specific proteins atrial natriuretic factor (ANP) and connective tissue growth factor, and CSC‐specific protein interleukin‐1 receptor‐like 1 (ST2) were found to affect rat CSC proliferation. These findings suggest that relative concentration of each protein may be crucial for cellular intertalk and for the final outcome of cardiac cell therapy.
International Archives of Medicine | 2015
Mariangela Peruzzi; Giuseppe Biondi-Zoccai; Luigi Frati; Elena De Falco; Isotta Chimenti; Ernesto Greco; Antonino G.M. Marullo; Piergiusto Vitulli; Giacomo Frati
Clinical translation in the field of regenerative medicine means manufacturing a safe, reproducible and effective clinical product for the benefit of patients. This represents the ultimate goal of applied research, but beyond researchers and clinicians, multiple intermediate players are involved, including other researchers, reviewers, funding agencies, scientific societies, guideline authors, and policy regulators. Consequently, bridging translational research and regenerative medicine therapies into the 21 st Century requires a resolute effort. We envisage that strategic and synergistic efforts in seven key areas will facilitate the mainstream adoption and implementation of regenerative medicine based therapies.
Biomaterials | 2011
Isotta Chimenti; Giuseppe Rizzitelli; Roberto Gaetani; Francesco Angelini; Vittoria Ionta; Elvira Forte; Giacomo Frati; Olivier Schussler; Andrea Barbetta; Elisa Messina; Mariella Dentini; Alessandro Giacomello
Cardiac tissue engineering (CTE) aims at regenerating damaged myocardium by combining cells to a biocompatible and/or bioactive matrix. Collagen and gelatin are among the most suitable materials used today for CTE approaches. In this study we compared the structural and biological features of collagen (C-RGD) or gelatin (G-FOAM)-based bioconstructs, seeded with human adult cardiac progenitor cells in the form of cardiospheres (CSps). The different morphology between C-RGD (fibrous ball-of-thread-like) and G-FOAM (trabecular sponge-like) was evidenced by SEM analysis and X-ray micro-tomography, and was reflected by their different mechanical characteristics. Seeded cells were viable and proliferating after 1 week in culture, and a reduced expression of cell-stress markers versus standard CSp culture was detected by realtime PCR. Cell engraftment inside the scaffolds was assessed by SEM microscopy and histology, evidencing more relevant cell migration and production of extracellular matrix in C-RGD versus G-FOAM. Immunofluorescence and realtime PCR analysis showed down-regulation of vascular and stemness markers, while early-to-late cardiac markers were consistently and significantly upregulated in G-FOAM and C-RGD compared to standard CSps culture, suggesting selective commitment towards cardiomyocytes. Overall our results suggest that CSp-bioconstructs have suitable mechanical properties and improved survival and cardiogenic properties, representing promising tools for CTE.
Journal of Cellular and Molecular Medicine | 2010
Roberto Gaetani; Giuseppe Rizzitelli; Isotta Chimenti; Lucio Barile; Elvira Forte; Vittoria Ionta; Francesco Angelini; Joost P.G. Sluijter; Andrea Barbetta; Elisa Messina; Giacomo Frati
• Introduction • Lessons from cell therapy • Cardiac tissue engineering ‐ In vivo CTE applications ‐ In vitro CTE applications • Conclusions
Stem Cells and Development | 2012
Elvira Forte; Fabio Miraldi; Isotta Chimenti; Francesco Angelini; Ann Zeuner; Alessandro Giacomello; Mark Mercola; Elisa Messina
Autologous cardiac progenitor cells (CPCs) isolated as cardiospheres (CSps) represent a promising candidate for cardiac regenerative therapy. A better understanding of the origin and mechanisms underlying human CSps formation and maturation is undoubtedly required to enhance their cardiomyogenic potential. Epithelial-to-mesenchymal transition (EMT) is a key morphogenetic process that is implicated in the acquisition of stem cell-like properties in different adult tissues, and it is activated in the epicardium after ischemic injury to the heart. We investigated whether EMT is involved in the formation and differentiation of human CSps, revealing that an up-regulation of the expression of EMT-related genes accompanies CSps formation that is relative to primary explant-derived cells and CSp-derived cells grown in a monolayer. EMT and CSps formation is enhanced in the presence of transforming growth factor β1 (TGFβ1) and drastically blocked by the type I TGFβ-receptor inhibitor SB431452, indicating that TGFβ-dependent EMT is essential for the formation of these niche-like 3D-multicellular clusters. Since TGFβ is activated in the myocardium in response to injury, our data suggest that CSps formation mimics an adaptive mechanism that could potentially be enhanced to increase in vivo or ex vivo regenerative potential of adult CPCs.
Stem Cell Reviews and Reports | 2011
Elvira Forte; Isotta Chimenti; Lucio Barile; Roberto Gaetani; Francesco Angelini; Vittoria Ionta; Elisa Messina; Alessandro Giacomello
Heart failure remains one of the main causes of morbidity and mortality in the Western world. Current therapies for myocardial infarction are mostly aimed at blocking the progression of the disease, preventing detrimental cardiac remodeling and potentiating the function of the surviving tissue. In the last decade, great interest has arisen from the possibility to regenerate lost tissue by using cells as a therapeutic tool. Different cell types have been tested in animal models, including bone marrow-derived cells, myoblasts, endogenous cardiac stem cells, embryonic cells and induced pluripotent stem cells. After the conflicting and often inconsistent results of the first clinical trials, a step backward needs to be performed, to understand the basic biological mechanisms underlying spontaneous and induced cardiac regeneration. Current studies aim at finding new strategies to enhance cellular homing, survival and differentiation in order to improve the overall outcome of cellular cardiomyoplasty