Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alessia Bartalucci is active.

Publication


Featured researches published by Alessia Bartalucci.


Neurobiology of Disease | 2010

A systematic study of brainstem motor nuclei in a mouse model of ALS, the effects of lithium

Michela Ferrucci; Alida Spalloni; Alessia Bartalucci; E Cantafora; Federica Fulceri; Michele Nutini; Patrizia Longone; Antonio Paparelli; Francesco Fornai

Transgenic mice expressing the human superoxide dismutase 1 (SOD-1) mutant at position 93 (G93A) develop a phenotype resembling amyotrophic lateral sclerosis (ALS). In fact, G93A mice develop progressive motor deficits which finally lead to motor palsy and death. This is due to the progressive degeneration of motor neurons in the ventral horn of the spinal cord. Although a similar loss is reported for specific cranial motor nuclei, only a few studies so far investigated degeneration in a few brainstem nuclei. We recently reported that chronic lithium administration delays onset and duration of the disease, while reducing degeneration of spinal motor neuron. In the present study, we extended this investigation to all somatic motor nuclei of the brain stem in the G93A mice and we evaluated whether analogous protective effects induced by lithium in the spinal cord were present at the brain stem level. We found that all motor but the oculomotor nuclei were markedly degenerated in G93A mice, and chronic treatment with lithium significantly attenuated neurodegeneration in the trigeminal, facial, ambiguus, and hypoglossal nuclei. Moreover, in the hypoglossal nucleus, we found that recurrent collaterals were markedly lost in G93A mice while they were rescued by chronic lithium administration.


Brain Research | 2007

Abnormal involuntary movements (AIMs) following pulsatile dopaminergic stimulation: severe deterioration and morphological correlates following the loss of locus coeruleus neurons.

Federica Fulceri; Francesca Biagioni; Michela Ferrucci; Gloria Lazzeri; Alessia Bartalucci; V. Galli; Stefano Ruggieri; Antonio Paparelli; Francesco Fornai

Parkinsonian patients are treated with dopamine replacement therapy (typically, intermittent administration of the dopamine precursor L-DOPA); however, this is associated with the onset of abnormal involuntary movements, which seriously impair the quality of life. The molecular mechanisms underlying abnormal involuntary movements represent an intense field of investigation in the area of neurobiology of disease, although their aetiology remains unclear. Apart from the fine cellular mechanisms, the pathways responsible for the generation of abnormal involuntary movements may involve changes in neurotransmitter systems. A potential candidate is noradrenaline, since a severe loss of this neurotransmitter characterizes Parkinsons disease, and noradrenergic drugs produce a symptomatic relief of L-DOPA-induced dyskinesia. In previous studies we found that pulsatile dopamine release, in the absence of the physiological noradrenaline innervation, produces motor alterations and ultrastructural changes within striatal neurons. In the present study we demonstrate that a unilateral damage to the noradrenaline system anticipates the onset and worsens the severity of L-DOPA-induced contralateral abnormal involuntary movements in hemi-parkinsonian rats. Similarly, ubiquitin-positive striatal ultrastructural changes occur in unilaterally dopamine-depleted, noradrenaline-deficient rats following chronic L-DOPA administration. This study confirms a significant impact of the noradrenergic system in the natural history of Parkinsons disease and extends its role to the behavioural and morphological effects taking place during pulsatile dopamine replacement therapy.


Current Neuropharmacology | 2013

The Effects of Locus Coeruleus and Norepinephrine in Methamphetamine Toxicity

Michela Ferrucci; Filippo S. Giorgi; Alessia Bartalucci; Carla L. Busceti; Francesco Fornai

The activity of locus coeruleus (LC) neurons has been extensively investigated in a variety of behavioural states. In fact this norepinephrine (NE)-containing nucleus modulates many physiological and pathological conditions including the sleep-waking cycle, movement disorders, mood alterations, convulsive seizures, and the effects of drugs such as psychostimulants and opioids. This review focuses on the modulation exerted by central NE pathways on the behavioural and neurotoxic effects produced by the psychostimulant methamphetamine, essentially the modulation of the activity of mesencephalic dopamine (DA) neurons. In fact, although NE in itself mediates some behavioural effects induced by methamphetamine, NE modulation of DA release is pivotal for methamphetamine-induced behavioural states and neurotoxicity. These interactions are discussed on the basis of the state of the art of the functional neuroanatomy of central NE- and DA systems. Emphasis is given to those brain sites possessing a remarkable overlapping of both neurotransmitters.


Histology and Histopathology | 2012

High-intensity exercise training produces morphological and biochemical changes in adrenal gland of mice.

Alessia Bartalucci; Michela Ferrucci; Federica Fulceri; Gloria Lazzeri; Paola Lenzi; Luca Toti; Fabio R. Serpiello; A. La Torre; Marco Gesi

The effects of training are dependent on complex, adaptive changes which are induced by acute physical exercise at different levels. In particular, evidence shows that the hypothalamus-pituitary-adrenocortical axis, as well as the sympatho-adrenomedullary system, is mainly involved in mediating the physiological effects of physical exercise. The aim of the present study was to investigate, through a morphological and biochemical approach, the effects of training on the adrenal gland of mice, following two different protocols consisting of either low- or high-intensity training. Mice were run daily on a motorised treadmill for 8 weeks, at a velocity corresponding to 60% (low-intensity exercise) or 90% (high-intensity exercise) of the maximal running velocity previously determined by an incremental exercise test. We found that physical exercise produced an increase in the adrenal gland size compared with the control (sedentary) mice. The increase was 31.04% for mice that underwent high-intensity exercise and 10.08% for mice that underwent low intensity exercise, and this appeared to be the result of an increase in the area of both the adrenal cortex and adrenal medulla. Morphological analysis of the adrenal cortex showed that both types of exercise produced an increase in cytoplasmic vacuoles in steroidogenic cells, appearing more abundant after high-intensity exercise. No change was found in the reticulate zone. In the adrenal medulla, despite the absence of morphological changes, immunohistochemistry for tyrosine hydroxylase, dopamine β-hydroxylase and phenyl-ethanolamine-N-methyltransferase demonstrated an increased immunopositivity for these cathecolamine-synthesizing enzymes after intense exercise. These results were confirmed by immunoblot accompanied by densitometric analysis.


Archives Italiennes De Biologie | 2011

Autophagy activation in glutamate-induced motor neuron loss

Federica Fulceri; Michela Ferrucci; Gloria Lazzeri; Silvio Paparelli; Alessia Bartalucci; Ilaria Tamburini; Antonio Paparelli; Francesco Fornai

Recent literature demonstrated that exposure to excitatory amino acid in specific experimental conditions might produce a defect in the autophagy pathway. Such an effect was observed in motor neurons exposed chronically to glutamate agonists. On the other hand, it is well known that glutamate induces motor neuron death and this is supposed to play a key role in the physiopathology of motor neuron loss in amyotrophic lateral sclerosis (ALS). Similarly, a defective recruitment of autophagy was recently documented in ALS. In the present study we found that exposure of motor neurons to kainic acid produces intracellular changes associated with defective autophagy. In this experimental conditions, pharmacological activation of autophagy rescues the loss of motor neurons.


Frontiers in Cellular Neuroscience | 2015

Ultrastructural studies of ALS mitochondria connect altered function and permeability with defects of mitophagy and mitochondriogenesis

Riccardo Ruffoli; Alessia Bartalucci; Alessandro Frati; Francesco Fornai

The key role of mitochondria in patients affected by amyotrophic lateral sclerosis (ALS) is well documented by electron microscopy studies of motor neurons within spinal cord and brainstem. Nonetheless, recent studies challenged the role of mitochondria placed within the cell body of motor neuron. In fact, it was demonstrated that, despite preservation of mitochondria placed within this compartment, there is no increase in the lifespan of transgenic mouse models of ALS. Thus, the present mini-review comments on morphological findings of mitochondrial alterations in ALS patients in connection with novel findings about mitochondrial dynamics within various compartments of motor neurons. The latter issue was recently investigated in relationship with altered calcium homeostasis and autophagy, which affect mitochondria in ALS. In fact, it was recently indicated that a pathological mitophagy, mitochondriogenesis and calcium homeostasis produce different ultrastructural effects within specific regions of motor neurons. This might explain why specific compartments of motor neurons possess different thresholds to mitochondrial damage. In particular, it appears that motor axons represent the most sensitive compartment which undergoes the earliest and most severe alterations in the course of ALS. It is now evident that altered calcium buffering is compartment-dependent, as well as mitophagy and mitochondriogenesis. On the other hand, mitochondrial homeostasis strongly relies on calcium handling, the removal of altered mitochondria through the autophagy flux (mitophagy) and the biogenesis of novel mitochondria (mitochondriogenesis). Thus, recent findings related to altered calcium storage and impaired autophagy flux in ALS may help to understand the occurrence of mitochondrial alterations as a hallmark in ALS patients. At the same time, the compartmentalization of such dysfunctions may be explained considering the compartments of calcium dynamics and autophagy flux within motor neurons.


Biology of Sport | 2013

High-intensity exercise training induces morphological and biochemical changes in skeletal muscles.

Luca Toti; Alessia Bartalucci; Michela Ferrucci; Federica Fulceri; Gloria Lazzeri; Paola Lenzi; Paola Soldani; Pietro Gobbi; A. La Torre; Marco Gesi

In the present study we investigated the effect of two different exercise protocols on fibre composition and metabolism of two specific muscles of mice: the quadriceps and the gastrocnemius. Mice were run daily on a motorized treadmill, at a velocity corresponding to 60% or 90% of the maximal running velocity. Blood lactate and body weight were measured during exercise training. We found that at the end of training the body weight significantly increased in high-intensity exercise mice compared to the control group (P=0.0268), whereas it decreased in low-intensity exercise mice compared to controls (P=0.30). In contrast, the food intake was greater in both trained mice compared to controls (P < 0.0001 and P < 0.0001 for low-intensity and high-intensity exercise mice, respectively). These effects were accompanied by a progressive reduction in blood lactate levels at the end of training in both the exercised mice compared with controls (P=0.03 and P < 0.0001 for low-intensity and high-intensity exercise mice, respectively); in particular, blood lactate levels after high-intensity exercise were significantly lower than those measured in low-intensity exercise mice (P=0.0044). Immunoblotting analysis demonstrated that high-intensity exercise training produced a significant increase in the expression of mitochondrial enzymes contained within gastrocnemius and quadriceps muscles. These changes were associated with an increase in the amount of slow fibres in both these muscles of high-intensity exercise mice, as revealed by the counts of slow fibres stained with specific antibodies (P < 0.0001 for the gastrocnemius; P=0.0002 for the quadriceps). Our results demonstrate that high-intensity exercise, in addition to metabolic changes consisting of a decrease in blood lactate and body weight, induces an increase in the mitochondrial enzymes and slow fibres in different skeletal muscles of mice, which indicates an exercise-induced increase in the aerobic metabolism.


Pharmacological Research | 2016

Small bowel protection against NSAID-injury in rats: Effect of rifaximin, a poorly absorbed, GI targeted, antibiotic

Matteo Fornai; Luca Antonioli; Carolina Pellegrini; Rocchina Colucci; Deborah Sacco; Erika Tirotta; Gianfranco Natale; Alessia Bartalucci; Marina Flaibani; Cecilia Renzulli; Emilia Ghelardi; Corrado Blandizzi; Carmelo Scarpignato

Nonsteroidal anti-inflammatory drugs, besides exerting detrimental effects on the upper digestive tract, can also damage the small and large intestine. Although the underlying mechanisms remain unclear, there is evidence that enteric bacteria play a pivotal role. The present study examined the enteroprotective effects of a delayed-release formulation of rifaximin-EIR (R-EIR, 50mg/kg BID, i.g.), a poorly absorbed antibiotic with a broad spectrum of antibacterial activity, in a rat model of enteropathy induced by indomethacin (IND, 1.5mg/kg BID for 14 days) administration. R-EIR was administered starting 7 days before or in concomitance with IND administration. At the end of treatments, blood samples were collected to evaluate hemoglobin (Hb) concentration (as an index of digestive bleeding). Small intestine was processed for: (1) histological assessment of intestinal damage (percentage length of lesions over the total length examined); (2) assay of tissue myeloperoxidase (MPO) and TNF levels, as markers of inflammation; (3) assay of tissue malondialdehyde (MDA) and protein carbonyl concentrations, as an index of lipid and protein peroxidation, respectively; (4) evaluation of the major bacterial phyla. IND significantly decreased Hb levels, this effect being significantly blunted by R-EIR. IND also induced the occurrence of lesions in the jejunum and ileum. In both intestinal regions, R-EIR significantly reduced the percentage of lesions, as compared with rats receiving IND alone. Either the markers of inflammation and tissue peroxidation were significantly increased in jejunum and ileum from IND-treated rats. However, in rats treated with R-EIR, these parameters were not significantly different from those observed in controls. R-EIR was also able to counterbalance the increase in Proteobacteria and Firmicutes abundance induced by INDO. To summarize, R-EIR treatment significantly prevents IND-induced intestinal damage, this enteroprotective effect being associated with a decrease in tissue inflammation, oxidative stress and digestive bleeding as well as reversal of NSAID-induced alterations in bacterial population.


Brain Research | 2012

Motor neuron pathology and behavioral alterations at late stages in a SMA mouse model

Federica Fulceri; Alessia Bartalucci; Silvio Paparelli; Livia Pasquali; Francesca Biagioni; Michela Ferrucci; Riccardo Ruffoli; Francesco Fornai

Spinal muscular atrophy (SMA) is a neurogenetic autosomal recessive disorder characterized by degeneration of lower motor neurons. The validation of appropriate animal models is key in fostering SMA research. Recent studies set up an animal model showing long survival and slow disease progression. This model is knocked out for mouse SMN (Smn(-/-)) gene and carries a human mutation of the SMN1 gene (SMN1A2G), along with human SMN2 gene. In the present study we used this knock out double transgenic mouse model (SMN2(+/+); Smn(-/-); SMN1A2G(+/-)) to characterize the spinal cord pathology along with motor deficit at prolonged survival times. In particular, motor neuron loss was established stereologically (44.77%) after motor deficit reached a steady state. At this stage, spared motor neurons showed significant cell body enlargement. Moreover, similar to what was described in patients affected by SMA we found neuronal heterotopy (almost 4% of total motor neurons) in the anterior white matter. The delayed disease progression was likely to maintain fair motor activity despite a dramatic loss of large motor neurons. This provides a wonderful tool to probe novel drugs finely tuning the survival of motor neurons. In fact, small therapeutic effects protracted over considerable time intervals (even more than a year) are expected to be magnified.


Microscopy Research and Technique | 2010

MDMA (ecstasy) enhances loud noise‐induced morphofunctional alterations in heart and adrenal gland

Federica Fulceri; Michela Ferrucci; Paola Lenzi; Paola Soldani; Alessia Bartalucci; Antonio Paparelli; Marco Gesi

Noise is an environmental stressor increasingly more present in modern life and, in particular, in a variety of recreational contexts. The aim of this work is to show the effects of noise on the myocardium and adrenal gland, through a careful review of the literature dealing with the peripheral effects of noise exposure in experimental and clinical studies. Noise induces adverse effects in human health, principally involving the cardiovascular and autonomic nervous systems, and the endocrine apparatus. Several factors in recreational environments potentially worsen the effects induced by loud noise. Among these, the intake of 3,4‐methylenedioxymethamphetamine (MDMA) is frequently associated with noise exposure in recreational situations, because of its high compliance within social and relaxation settings. For this reason, MDMA is defined as a club drug—as its intake by young people often occurs in association with other factors, such as aggregation, high temperatures, and noise. It is known that self‐administration of MDMA by humans causes severe toxicity. In particular, the myocardium is affected early after MDMA intake—resulting in tachycardia, hypertension, and arrhythmia. Furthermore, MDMA alters the activity of the adrenal glands by elevating catecholamines and corticosterone levels. This review shows that combining MDMA and loud noise exposure potentiates the effects that are produced by each single stimulant alone as seen in experimental animal models. The convergence of the effects of prolonged loud noise exposure and the consumption of MDMA on the same system might explain the sudden fatal events that happen in recreational situations. Microsc. Res. Tech., 2011.

Collaboration


Dive into the Alessia Bartalucci's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge