Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alessia Graziano is active.

Publication


Featured researches published by Alessia Graziano.


Journal of Medicinal Chemistry | 2009

6-Methyl-2,4-Disubstituted Pyridazin-3(2H)-ones: A Novel Class of Small-Molecule Agonists for Formyl Peptide Receptors

Agostino Cilibrizzi; Mark T. Quinn; Liliya N. Kirpotina; Igor A. Schepetkin; Jeff Holderness; Richard D. Ye; Marie Josèphe Rabiet; Claudio Biancalani; Nicoletta Cesari; Alessia Graziano; Claudia Vergelli; Stefano Pieretti; Vittorio Dal Piaz; Maria Paola Giovannoni

Following a ligand-based drug design approach, a potent mixed formyl peptide receptor 1 (FPR1) and formyl peptide receptor-like 1 (FPRL1) agonist (14a) and a potent and specific FPRL1 agonist (14x) were identified. These compounds belong to a large series of pyridazin-3(2H)-one derivatives substituted with a methyl group at position 6 and a methoxy benzyl at position 4. At position 2, an acetamide side chain is essential for activity. Likewise, the presence of lipophilic and/or electronegative substituents in the position para to the aryl group at the end of the chain plays a critical role for activity. Affinity for FPR1 receptors was evaluated by measuring intracellular calcium flux in HL-60 cells transfected with FPR1, FPRL1, and FPRL2. Agonists were able to activate intracellular calcium mobilization and chemotaxis in human neutrophils. The most potent chemotactic agent (EC(50) = 0.6 microM) was the mixed FPR/FPRL1 agonist 14h.


Journal of Medicinal Chemistry | 2009

Further Studies on Arylpiperazinyl Alkyl Pyridazinones: Discovery of an Exceptionally Potent, Orally Active, Antinociceptive Agent in Thermally Induced Pain†

Claudio Biancalani; Maria Paola Giovannoni; Stefano Pieretti; Nicoletta Cesari; Alessia Graziano; Claudia Vergelli; Agostino Cilibrizzi; Amalia Di Gianuario; Mariantonella Colucci; Giorgina Mangano; Beatrice Garrone; Lorenzo Polenzani; Vittorio Dal Piaz

A number of pyridazinone derivatives bearing an arylpiperazinylalkyl chain were synthesized and tested icv in a model of acute nociception induced by thermal stimuli in mice (tail flick). The most interesting and potent compound in this series was 6a, which showed an ED(50) = 3.5 microg, a value about 3-fold higher with respect to morphine by the same route of administration. When administered per os, 6a was 4-fold more potent than morphine in the same test, suggesting a significant bioavailability. The same compound also showed high potency in the hot plate test. The antinociceptive effect of 6a was completely reversed by pretreatment with yohimbine both in the hot plate test and in the tail flick test. This demonstrated the involvement of the adrenergic system, which was confirmed by in vitro radioligand binding studies.


Journal of Medicinal Chemistry | 2013

Optimization of N-Benzoylindazole Derivatives as Inhibitors of Human Neutrophil Elastase

Letizia Crocetti; Igor A. Schepetkin; Agostino Cilibrizzi; Alessia Graziano; Claudia Vergelli; Donatella Giomi; Andrei I. Khlebnikov; Mark T. Quinn; Maria Paola Giovannoni

Human neutrophil elastase (HNE) is an important therapeutic target for treatment of pulmonary diseases. Previously, we identified novel N-benzoylindazole derivatives as potent, competitive, and pseudoirreversible HNE inhibitors. Here, we report further development of these inhibitors with improved potency, protease selectivity, and stability compared to our previous leads. Introduction of a variety of substituents at position 5 of the indazole resulted in the potent inhibitor 20f (IC50 ∼10 nM) and modifications at position 3 resulted the most potent compound in this series, the 3-CN derivative 5b (IC50 = 7 nM); both derivatives demonstrated good stability and specificity for HNE versus other serine proteases. Molecular docking of selected N-benzoylindazoles into the HNE binding domain suggested that inhibitory activity depended on geometry of the ligand-enzyme complexes. Indeed, the ability of a ligand to form a Michaelis complex and favorable conditions for proton transfer between Hys57, Asp102, and Ser195 both affected activity.


European Journal of Medicinal Chemistry | 2013

Further studies on 2-arylacetamide pyridazin-3(2H)-ones: design, synthesis and evaluation of 4,6-disubstituted analogs as formyl peptide receptors (FPRs) agonists.

Maria Paola Giovannoni; Igor A. Schepetkin; Agostino Cilibrizzi; Letizia Crocetti; Andrei I. Khlebnikov; Claes Dahlgren; Alessia Graziano; Vittorio Dal Piaz; Liliya N. Kirpotina; Serena Zerbinati; Claudia Vergelli; Mark T. Quinn

Formyl peptide receptors (FPRs) play an essential role in the regulation of endogenous inflammation and immunity. In the present studies, a large series of pyridazin-3(2H)-one derivatives bearing an arylacetamide chain at position 2 was synthesized and tested for FPR agonist activity. The pyridazin-3(2H)-one ring was confirmed to be an appropriate scaffold to support FPR agonist activity, and its modification at the 4 and 6 positions led to the identification of additional active agonists, which induced intracellular Ca(2+) flux in HL-60 cells transfected with either FPR1, FPR2, or FPR3. Seven formyl peptide receptor 1 (FPR1)-specific and several mixed FPR1/FPR2 dual agonists were identified with low micromolar EC50 values. Furthermore, these agonists also activated human neutrophils, inducing intracellular Ca(2+) flux and chemotaxis. Finally, molecular docking studies indicated that the most potent pyridazin-3(2H)-ones overlapped in their best docking poses with fMLF and WKYMVM peptides in the FPR1 and FPR2 ligand binding sites, respectively. Thus, pyridazinone-based compounds represent potential lead compounds for further development of selective and/or potent FPR agonists.


Bioorganic & Medicinal Chemistry | 2012

Synthesis, enantioresolution, and activity profile of chiral 6-methyl-2,4-disubstituted pyridazin-3(2H)-ones as potent N-formyl peptide receptor agonists.

Agostino Cilibrizzi; Igor A. Schepetkin; Gianluca Bartolucci; Letizia Crocetti; Vittorio Dal Piaz; Maria Paola Giovannoni; Alessia Graziano; Liliya N. Kirpotina; Mark T. Quinn; Claudia Vergelli

A series of chiral pyridazin-3(2H)-ones was synthesized, separated as pure enantiomers, and evaluated for N-formyl peptide receptor (FPR) agonist activity. Characterization of the purified enantiomers using combined chiral HPLC and chiroptical studies (circular dichroism, allowed unambiguous assignment of the absolute configuration for each pair of enantiomers). Evaluation of the ability of racemic mixtures and purified enantiomers to stimulate intracellular Ca(2+) flux in FPR-transfected HL-60 cells and human neutrophils and to induce β-arrestin recruitment in FPR-transfected CHO-K1 cells showed that many enantiomers were potent agonists, inducing responses in the sub-micromolar to nanomolar range. Furthermore, FPRs exhibited enantiomer selectivity, generally preferring the R-(-)-forms over the S-(+)-enantiomers. Finally, we found that elongation of the carbon chain in the chiral center of the active compounds generally increased biological activity. Thus, these studies provide important new information regarding molecular features involved in FPR ligand preference and report the identification of a novel series of FPR agonists.


Current Medicinal Chemistry | 2010

PDE5 Inhibitors and their Applications

Maria Paola Giovannoni; Claudia Vergelli; Alessia Graziano; V. Dal Piaz

PDE5 belongs to a superfamily of enzymes that catalyzes the hydrolysis of cyclic nucleotides cAMP and cGMP to the corresponding 5-nucleoside monophosphate. PDE5 takes part in many physiological and pathological functions, therefore selective PDE5 inhibitors are potentially useful for a variety of pathologies. At the present, PDE5 inhibitors available on the market have been used for the treatment of erectile dysfunction but, at the same time, are in clinical trials investigating other pathologies such as pulmonary arterial hypertension, coronary vasospasm, benign prostatic hyperplasia etc. This review analyzes the PDE5 inhibitors currently in clinical use, the drugs in clinical trials and the most representative chemical classes published in literature in this last decade.


Bioorganic & Medicinal Chemistry | 2011

Design, synthesis and evaluation of N-benzoylindazole derivatives and analogues as inhibitors of human neutrophil elastase

Letizia Crocetti; Maria Paola Giovannoni; Igor A. Schepetkin; Mark T. Quinn; Andrei I. Khlebnikov; Agostino Cilibrizzi; Vittorio Dal Piaz; Alessia Graziano; Claudia Vergelli

Human neutrophil elastase (HNE) plays an important role in tumour invasion and inflammation. A series of N-benzoylindazoles was synthesized and evaluated for their ability to inhibit HNE. We found that this scaffold is appropriate for HNE inhibitors and that the benzoyl fragment at position 1 is essential for activity. The most active compounds inhibited HNE activity with IC₅₀ values in the submicromolar range. Furthermore, docking studies indicated that the geometry of an inhibitor within the binding site and energetics of Michaelis complex formation were key factors influencing the inhibitors biological activity. Thus, N-benzoylindazole derivatives and their analogs represent novel structural templates that can be utilized for further development of efficacious HNE inhibitors.


Bioorganic & Medicinal Chemistry | 2010

Functionalized pyrazoles and pyrazolo[3,4-d]pyridazinones: Synthesis and evaluation of their phosphodiesterase 4 inhibitory activity

Pierfrancesco Biagini; Claudio Biancalani; Alessia Graziano; Nicoletta Cesari; Maria Paola Giovannoni; Agostino Cilibrizzi; Vittorio Dal Piaz; Claudia Vergelli; Letizia Crocetti; Maurizio Delcanale; Elisabetta Armani; Andrea Rizzi; Paola Puccini; Paola Maria Gallo; Daniele Spinabelli; Paola Caruso

A series of pyrazoles and pyrazolo[3,4-d]pyridazinones were synthesized and evaluated for their PDE4 inhibitory activity. All the pyrazoles were found devoid of activity, whereas some of the novel pyrazolo[3,4-d]pyridazinones showed good activity as PDE4 inhibitors. The most potent compounds in this series showed an IC(50) in the nanomolar range. The ability to inhibit TNF-alpha release in human PBMCs was determined for two representative compounds, finding values in the sub-micromolar range. SARs studies demonstrated that the best arranged groups around the heterocyclic core are 2-chloro-, 2-methyl- and 3-nitrophenyl at position 2, an ethyl ester at position 4 and a small alkyl group at position 6. Molecular modeling studies performed on a representative compound allowed to define its binding mode to the PDE4B isoform.


Journal of Enzyme Inhibition and Medicinal Chemistry | 2007

Synthesis of pyrrolo[2,3-d]pyridazinones as potent, subtype selective PDE4 inhibitors.

Maria Paola Giovannoni; Nicoletta Cesari; Alessia Graziano; Claudia Vergelli; Claudio Biancalani; Pierfrancesco Biagini; Vittorio Dal Piaz

A series of pyrrolo[2,3-d]pyridazinones was synthesized and tested for their inhibitory activity on PDE4 subtypes A, B and D and selectivity toward Rolipram high affinity binding site (HARBS). New agents with interesting profile were reported; in particular compound 9e showed a good PDE4 subtype selectivity, being 8 times more potent (IC50 = 0.32 μM) for PDE4B (anti-inflammatory) than for PDE4D (IC50 = 2.5 μM), generally considered the subtype responsible for emesis. Moreover the ratio HARBS/PDE4B was particularly favourable for 9e (147), suggesting that the best arranged groups around the pyrrolopyridazinone core are an isopropyl at position-1, an ethoxycarbonyl at position-2, together with an ethyl group at position-6. For compounds 8 and 15a the ability to inhibit TNFα production in PBMC was evaluated and the results are consistent with their PDE4 inhibitory activity.


Drug Development Research | 2013

Synthesis and Pharmacological Evaluation of New Pyridazin‐Based Thioderivatives as Formyl Peptide Receptor (FPR) Agonists

Letizia Crocetti; Claudia Vergelli; Agostino Cilibrizzi; Alessia Graziano; Andrei I. Khlebnikov; Liliya N. Kirpotina; Igor A. Schepetkin; Mark T. Quinn; Maria Paola Giovannoni

Preclinical Research

Collaboration


Dive into the Alessia Graziano's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark T. Quinn

Montana State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge