Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Letizia Crocetti is active.

Publication


Featured researches published by Letizia Crocetti.


Journal of Medicinal Chemistry | 2013

Optimization of N-Benzoylindazole Derivatives as Inhibitors of Human Neutrophil Elastase

Letizia Crocetti; Igor A. Schepetkin; Agostino Cilibrizzi; Alessia Graziano; Claudia Vergelli; Donatella Giomi; Andrei I. Khlebnikov; Mark T. Quinn; Maria Paola Giovannoni

Human neutrophil elastase (HNE) is an important therapeutic target for treatment of pulmonary diseases. Previously, we identified novel N-benzoylindazole derivatives as potent, competitive, and pseudoirreversible HNE inhibitors. Here, we report further development of these inhibitors with improved potency, protease selectivity, and stability compared to our previous leads. Introduction of a variety of substituents at position 5 of the indazole resulted in the potent inhibitor 20f (IC50 ∼10 nM) and modifications at position 3 resulted the most potent compound in this series, the 3-CN derivative 5b (IC50 = 7 nM); both derivatives demonstrated good stability and specificity for HNE versus other serine proteases. Molecular docking of selected N-benzoylindazoles into the HNE binding domain suggested that inhibitory activity depended on geometry of the ligand-enzyme complexes. Indeed, the ability of a ligand to form a Michaelis complex and favorable conditions for proton transfer between Hys57, Asp102, and Ser195 both affected activity.


European Journal of Medicinal Chemistry | 2013

Further studies on 2-arylacetamide pyridazin-3(2H)-ones: design, synthesis and evaluation of 4,6-disubstituted analogs as formyl peptide receptors (FPRs) agonists.

Maria Paola Giovannoni; Igor A. Schepetkin; Agostino Cilibrizzi; Letizia Crocetti; Andrei I. Khlebnikov; Claes Dahlgren; Alessia Graziano; Vittorio Dal Piaz; Liliya N. Kirpotina; Serena Zerbinati; Claudia Vergelli; Mark T. Quinn

Formyl peptide receptors (FPRs) play an essential role in the regulation of endogenous inflammation and immunity. In the present studies, a large series of pyridazin-3(2H)-one derivatives bearing an arylacetamide chain at position 2 was synthesized and tested for FPR agonist activity. The pyridazin-3(2H)-one ring was confirmed to be an appropriate scaffold to support FPR agonist activity, and its modification at the 4 and 6 positions led to the identification of additional active agonists, which induced intracellular Ca(2+) flux in HL-60 cells transfected with either FPR1, FPR2, or FPR3. Seven formyl peptide receptor 1 (FPR1)-specific and several mixed FPR1/FPR2 dual agonists were identified with low micromolar EC50 values. Furthermore, these agonists also activated human neutrophils, inducing intracellular Ca(2+) flux and chemotaxis. Finally, molecular docking studies indicated that the most potent pyridazin-3(2H)-ones overlapped in their best docking poses with fMLF and WKYMVM peptides in the FPR1 and FPR2 ligand binding sites, respectively. Thus, pyridazinone-based compounds represent potential lead compounds for further development of selective and/or potent FPR agonists.


Bioorganic & Medicinal Chemistry | 2012

Synthesis, enantioresolution, and activity profile of chiral 6-methyl-2,4-disubstituted pyridazin-3(2H)-ones as potent N-formyl peptide receptor agonists.

Agostino Cilibrizzi; Igor A. Schepetkin; Gianluca Bartolucci; Letizia Crocetti; Vittorio Dal Piaz; Maria Paola Giovannoni; Alessia Graziano; Liliya N. Kirpotina; Mark T. Quinn; Claudia Vergelli

A series of chiral pyridazin-3(2H)-ones was synthesized, separated as pure enantiomers, and evaluated for N-formyl peptide receptor (FPR) agonist activity. Characterization of the purified enantiomers using combined chiral HPLC and chiroptical studies (circular dichroism, allowed unambiguous assignment of the absolute configuration for each pair of enantiomers). Evaluation of the ability of racemic mixtures and purified enantiomers to stimulate intracellular Ca(2+) flux in FPR-transfected HL-60 cells and human neutrophils and to induce β-arrestin recruitment in FPR-transfected CHO-K1 cells showed that many enantiomers were potent agonists, inducing responses in the sub-micromolar to nanomolar range. Furthermore, FPRs exhibited enantiomer selectivity, generally preferring the R-(-)-forms over the S-(+)-enantiomers. Finally, we found that elongation of the carbon chain in the chiral center of the active compounds generally increased biological activity. Thus, these studies provide important new information regarding molecular features involved in FPR ligand preference and report the identification of a novel series of FPR agonists.


Bioorganic & Medicinal Chemistry Letters | 2009

A thiabendazole sulfonamide shows potent inhibitory activity against mammalian and nematode α-carbonic anhydrases

Letizia Crocetti; Alfonso Maresca; Claudia Temperini; Rebecca A. Hall; Andrea Scozzafava; Fritz A. Mühlschlegel; Claudiu T. Supuran

A sulfonamide derivative of the antihelmintic drug thiabendazole was prepared and investigated for inhibition of the zinc enzyme carbonic anhydrase CA (EC 4.2.1.1). Mammalian isoforms CA I-XIV and the nematode enzyme of Caenorhabditis elegans CAH-4b were included in this study. Thiabendazole-5-sulfonamide was a very effective inhibitor of CAH-4b and CA IX (K(I)s of 6.4-9.5nm) and also inhibited effectively isozymes CA I, II, IV-VII, and XII, with K(I)s in the range of 17.8-73.2nM. The high resolution X-ray crystal structure of its adduct with isozyme II evidenced the structural elements responsible for this potent inhibitory activity.


Journal of Enzyme Inhibition and Medicinal Chemistry | 2015

Cinnoline derivatives as human neutrophil elastase inhibitors

Maria Paola Giovannoni; Igor A. Schepetkin; Letizia Crocetti; Giovanna Ciciani; Agostino Cilibrizzi; Gabriella Guerrini; Andrey Ivanovich Khlebnikov; Mark T. Quinn; Claudia Vergelli

Abstract Compounds that can effectively inhibit the proteolytic activity of human neutrophil elastase (HNE) represent promising therapeutics for treatment of inflammatory diseases. We present here the synthesis, structure–activity relationship analysis, and biological evaluation of a new series of HNE inhibitors with a cinnoline scaffold. These compounds exhibited HNE inhibitory activity but had lower potency compared to N-benzoylindazoles previously reported by us. On the other hand, they exhibited increased stability in aqueous solution. The most potent compound, 18a, had a good balance between HNE inhibitory activity (IC50 value = 56 nM) and chemical stability (t1/2 = 114 min). Analysis of reaction kinetics revealed that these cinnoline derivatives were reversible competitive inhibitors of HNE. Furthermore, molecular docking studies of the active products into the HNE binding site revealed two types of HNE inhibitors: molecules with cinnolin-4(1H)-one scaffold, which were attacked by the HNE Ser195 hydroxyl group at the amido moiety, and cinnoline derivatives containing an ester function at C-4, which is the point of attack of Ser195.


Bioorganic & Medicinal Chemistry | 2011

Design, synthesis and evaluation of N-benzoylindazole derivatives and analogues as inhibitors of human neutrophil elastase

Letizia Crocetti; Maria Paola Giovannoni; Igor A. Schepetkin; Mark T. Quinn; Andrei I. Khlebnikov; Agostino Cilibrizzi; Vittorio Dal Piaz; Alessia Graziano; Claudia Vergelli

Human neutrophil elastase (HNE) plays an important role in tumour invasion and inflammation. A series of N-benzoylindazoles was synthesized and evaluated for their ability to inhibit HNE. We found that this scaffold is appropriate for HNE inhibitors and that the benzoyl fragment at position 1 is essential for activity. The most active compounds inhibited HNE activity with IC₅₀ values in the submicromolar range. Furthermore, docking studies indicated that the geometry of an inhibitor within the binding site and energetics of Michaelis complex formation were key factors influencing the inhibitors biological activity. Thus, N-benzoylindazole derivatives and their analogs represent novel structural templates that can be utilized for further development of efficacious HNE inhibitors.


Bioorganic & Medicinal Chemistry | 2010

Functionalized pyrazoles and pyrazolo[3,4-d]pyridazinones: Synthesis and evaluation of their phosphodiesterase 4 inhibitory activity

Pierfrancesco Biagini; Claudio Biancalani; Alessia Graziano; Nicoletta Cesari; Maria Paola Giovannoni; Agostino Cilibrizzi; Vittorio Dal Piaz; Claudia Vergelli; Letizia Crocetti; Maurizio Delcanale; Elisabetta Armani; Andrea Rizzi; Paola Puccini; Paola Maria Gallo; Daniele Spinabelli; Paola Caruso

A series of pyrazoles and pyrazolo[3,4-d]pyridazinones were synthesized and evaluated for their PDE4 inhibitory activity. All the pyrazoles were found devoid of activity, whereas some of the novel pyrazolo[3,4-d]pyridazinones showed good activity as PDE4 inhibitors. The most potent compounds in this series showed an IC(50) in the nanomolar range. The ability to inhibit TNF-alpha release in human PBMCs was determined for two representative compounds, finding values in the sub-micromolar range. SARs studies demonstrated that the best arranged groups around the heterocyclic core are 2-chloro-, 2-methyl- and 3-nitrophenyl at position 2, an ethyl ester at position 4 and a small alkyl group at position 6. Molecular modeling studies performed on a representative compound allowed to define its binding mode to the PDE4B isoform.


Drug Development Research | 2013

Synthesis and Pharmacological Evaluation of New Pyridazin‐Based Thioderivatives as Formyl Peptide Receptor (FPR) Agonists

Letizia Crocetti; Claudia Vergelli; Agostino Cilibrizzi; Alessia Graziano; Andrei I. Khlebnikov; Liliya N. Kirpotina; Igor A. Schepetkin; Mark T. Quinn; Maria Paola Giovannoni

Preclinical Research


Bioorganic & Medicinal Chemistry | 2015

Synthesis of five and six-membered heterocycles bearing an arylpiperazinylalkyl side chain as orally active antinociceptive agents

Claudia Vergelli; Giovanna Ciciani; Agostino Cilibrizzi; Letizia Crocetti; Lorenzo Di Cesare Mannelli; Carla Ghelardini; Gabriella Guerrini; Antonella Iacovone; Maria Paola Giovannoni

A number of heterocycles bearing an arylpiperazinylalkyl side chain and structurally related to the previously described lead ET1 (4-amino-6-methyl-2-[3-(4-p-tolylpiperazin-1-yl)propyl]-5-vinylpyridazin-3(2H)-one) was synthesized and tested for their antinociceptive activity in Writhing Test. Many compounds, tested at doses of 20-40 mg/kg po were able to reduce the number of abdominal constrictions by more than 47% and, in same cases, the potency is comparable to lead ET1 as for 5e, 24a, 27b and 27c. The analgesia induced by the active compounds was completely prevented by pretreatment with α2-antagonist yohimbine, confirming the involvement of the adrenergic system in the mechanism of action for these new compounds.


Chirality | 2013

Synthesis, HPLC Enantioresolution, and X-ray Analysis of a New Series of C5-methyl Pyridazines as N-Formyl Peptide Receptor (FPR) Agonists

Agostino Cilibrizzi; Letizia Crocetti; Maria Paola Giovannoni; Alessia Graziano; Claudia Vergelli; Gianluca Bartolucci; Giacomo Soldani; Mark T. Quinn; Igor A. Schepetkin; Cristina Faggi

The synthesis of three racemates and the corresponding non-chiral analogues of a C5-methyl pyridazine series is described here, as well as the isolation of pure enantiomers and their absolute configuration assignment. In order to obtain optically active compounds, direct chromatographic methods of separation by HPLC-UV were investigated using four chiral stationary phases (CSPs: Lux Amylose-2, Lux Cellulose-1, Lux Cellulose-2 and Lux Cellulose-3). The best resolution was achieved using amylose tris(5-chloro-2-methylphenylcarbamate) (Lux Amylose-2), and single enantiomers were isolated on a semipreparative scale with high enantiomeric excess, suitable for biological assays. The absolute configuration of optically active compounds was unequivocally established by X-ray crystallographic analysis and comparative chiral HPLC-UV profile. All compounds of the series were tested for formyl peptide receptor (FPR) agonist activity, and four were found to be active, with EC50 values in the micromolar range.

Collaboration


Dive into the Letizia Crocetti's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark T. Quinn

Montana State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrei I. Khlebnikov

Tomsk Polytechnic University

View shared research outputs
Researchain Logo
Decentralizing Knowledge