Alessia Montagnoli
National University of Ireland, Galway
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alessia Montagnoli.
Journal of Biological Chemistry | 2006
Alessia Montagnoli; Barbara Valsasina; Deborah Brotherton; Sonia Troiani; Sonia Rainoldi; Pierluigi Tenca; Antonio Molinari; Corrado Santocanale
Minichromosome maintenance 2-7 proteins play a pivotal role in replication of the genome in eukaryotic organisms. Upon entry into S-phase several subunits of the MCM hexameric complex are phosphorylated. It is thought that phosphorylation activates the intrinsic MCM DNA helicase activity, thus allowing formation of active replication forks. Cdc7, Cdk2, and ataxia telangiectasia and Rad3-related kinases regulate S-phase entry and S-phase progression and are known to phosphorylate the Mcm2 subunit. In this work, by in vitro kinase reactions and mass spectrometry analysis of the products, we have mapped phosphorylation sites in the N terminus of Mcm2 by Cdc7, Cdk2, Cdk1, and CK2. We found that Cdc7 phosphorylates Mcm2 in at least three different sites, one of which corresponds to a site also reported to be phosphorylated by ataxia telangiectasia and Rad3-related. Three serine/proline sites were identified for Cdk2 and Cdk1, and a unique site was phosphorylated by CK2. We raised specific anti-phosphopeptide antibodies and found that all the sites identified in vitro are also phosphorylated in cells. Importantly, although all the Cdc7-dependent Mcm2 phosphosites fluctuate during the cell cycle with kinetics similar to Cdc7 kinase activity and Cdc7 protein levels, phosphorylation of Mcm2 in the putative cyclin-dependent kinase (Cdk) consensus sites is constant during the cell cycle. Furthermore, our analysis indicates that the majority of the Mcm2 isoforms phosphorylated by Cdc7 are not stably associated with chromatin. This study forms the basis for understanding how MCM functions are regulated by multiple kinases within the cell cycle and in response to external perturbations.
Cancer Research | 2004
Alessia Montagnoli; Pierluigi Tenca; Francesco Sola; Daniela Carpani; Deborah Brotherton; Clara Albanese; Corrado Santocanale
Cdc7 is an evolutionarily conserved kinase that regulates S phase by promoting replication origin activation. Down-regulation of Cdc7 by small interfering RNA in a variety of tumor cell lines causes an abortive S phase, leading to cell death by either p53-independent apoptosis or aberrant mitosis. Unlike replication fork blockade, Cdc7-depleted tumor cells do not elicit a robust checkpoint response; thus, inhibitory signals preventing additional cell cycle progression are not generated. In normal fibroblasts, however, a p53-dependent pathway actively prevents progression through a lethal S phase in the absence of sufficient Cdc7 kinase. We show that in this experimental system, p53 is required for the lasting maintenance of this checkpoint and for cell viability. With this work we reveal and begin to characterize a novel mechanism that regulates DNA synthesis in human cells, and we suggest that inhibition of Cdc7 kinase represents a promising approach for the development of a new generation of anticancer agents.
Nature Chemical Biology | 2008
Alessia Montagnoli; Barbara Valsasina; Valter Croci; Maria Menichincheri; Sonia Rainoldi; Vanessa Marchesi; Marcello Tibolla; Pierluigi Tenca; Deborah Brotherton; Clara Albanese; Veronica Patton; Rachele Alzani; Antonella Ciavolella; Francesco Sola; Antonio Molinari; Daniele Volpi; Nilla Avanzi; Francesco Fiorentini; Marina Cattoni; Sandra Healy; Dario Ballinari; Enrico Pesenti; Antonella Isacchi; Jurgen Moll; Aaron Bensimon; Ermes Vanotti; Corrado Santocanale
Cdc7 is an essential kinase that promotes DNA replication by activating origins of replication. Here, we characterized the potent Cdc7 inhibitor PHA-767491 (1) in biochemical and cell-based assays, and we tested its antitumor activity in rodents. We found that the compound blocks DNA synthesis and affects the phosphorylation of the replicative DNA helicase at Cdc7-dependent phosphorylation sites. Unlike current DNA synthesis inhibitors, PHA-767491 prevents the activation of replication origins but does not impede replication fork progression, and it does not trigger a sustained DNA damage response. Treatment with PHA-767491 results in apoptotic cell death in multiple cancer cell types and tumor growth inhibition in preclinical cancer models. To our knowledge, PHA-767491 is the first molecule that directly affects the mechanisms controlling initiation as opposed to elongation in DNA replication, and its activities suggest that Cdc7 kinase inhibition could be a new strategy for the development of anticancer therapeutics.
Journal of Medicinal Chemistry | 2008
Ermes Vanotti; Raffaella Amici; Alberto Bargiotti; Jens Berthelsen; Roberta Bosotti; Antonella Ciavolella; Alessandra Cirla; Cinzia Cristiani; Roberto D'alessio; Barbara Forte; Antonella Isacchi; Katia Martina; Maria Menichincheri; Antonio Molinari; Alessia Montagnoli; Paolo Orsini; Antonio Pillan; Fulvia Roletto; Alessandra Scolaro; Marcellino Tibolla; Barbara Valsasina; Mario Varasi; Daniele Volpi; Corrado Santocanale
Cdc7 kinase is an essential protein that promotes DNA replication in eukaryotic organisms. Genetic evidence indicates that Cdc7 inhibition can cause selective tumor-cell death in a p53-independent manner, supporting the rationale for developing Cdc7 small-molecule inhibitors for the treatment of cancers. In this paper, the synthesis and structure-activity relationships of 2-heteroaryl-pyrrolopyridinones, the first potent Cdc7 kinase inhibitors, are described. Starting from 2-pyridin-4-yl-1,5,6,7-tetrahydro-pyrrolo[3,2-c]pyridin-4-one, progress toward a simple scaffold, tailored for Cdc7 inhibition, is reported.
Journal of Biological Chemistry | 2007
Pierluigi Tenca; Deborah Brotherton; Alessia Montagnoli; Sonia Rainoldi; Clara Albanese; Corrado Santocanale
Cdc7 kinase promotes and regulates DNA replication in eukaryotic organisms. Multiple mechanisms modulating kinase activity in response to DNA replication stress have been reported, supporting the opposing notions that Cdc7 either plays an active role under these conditions or, conversely, is a final target inactivated by a checkpoint response. We have developed new immnunological reagents to study the properties of human Cdc7 kinase in cells challenged with the ribonucleotide reductase inhibitor hydroxyurea or with the DNA topoisomerase II inhibitor etoposide. We show that Cdc7·Dbf4 and Cdc7·Drf1 complexes are stable and active in multiple cell lines upon drug treatment, with Cdc7·Dbf4 accumulating on chromatin-enriched fractions. Cdc7 depletion by small interfering RNA in hydroxyurea and etoposide impairs hyper-phosphorylation of Mcm2 at specific Cdc7-dependent phosphorylation sites and drug-induced hyper-phosphorylation of chromatin-bound Mcm4. Furthermore, sustained inhibition of Cdc7 in the presence of these drugs increases cell death supporting the notion that the Cdc7 kinase plays a role in maintaining cell viability during replication stress.
Clinical Cancer Research | 2010
Alessia Montagnoli; Jurgen Moll; Francesco Colotta
The cell division cycle 7 (Cdc7) is a serine-threonine kinase, originally discovered in budding yeast, required to initiate DNA replication. Human Cdc7 phosphorylates the minichromosome maintenance protein 2 (Mcm2), a component of the DNA replicative helicase needed for genome duplication. Inhibition of Cdc7 in cancer cells impairs progression through S phase, inducing a p53-independent apoptotic cell death, whereas in normal cells, it does not affect cell viability. Small molecule compounds able to interfere with Cdc7 activity have been identified and shown to be effective in controlling tumor growth in animal models. Two Cdc7 inhibitors are currently in phase I clinical development. Inhibition of Cdc7 kinase activity in cancer cells restricts DNA replication and induces apoptotic cell death by an unprecedented molecular mechanism of action. Clin Cancer Res; 16(18); 4503–8. ©2010 AACR.
Journal of Medicinal Chemistry | 2009
Maria Menichincheri; Alberto Bargiotti; Jens Berthelsen; Jay Aaron Bertrand; Roberto Bossi; Antonella Ciavolella; Alessandra Cirla; Cinzia Cristiani; Croci; Roberto D'alessio; Marina Fasolini; Francesco Fiorentini; Barbara Forte; Antonella Isacchi; Katia Martina; A Molinari; Alessia Montagnoli; Paolo Orsini; Fabrizio Orzi; Enrico Pesenti; Daniele Pezzetta; Antonio Pillan; Italo Poggesi; Fulvia Roletto; Alessandra Scolaro; Marco Tato; Marcellino Tibolla; Barbara Valsasina; Mario Varasi; Daniele Volpi
Cdc7 kinase is a key regulator of the S-phase of the cell cycle, known to promote the activation of DNA replication origins in eukaryotic organisms. Cdc7 inhibition can cause tumor-cell death in a p53-independent manner, supporting the rationale for developing Cdc7 inhibitors for the treatment of cancer. In this paper, we conclude the structure-activity relationships study of the 2-heteroaryl-pyrrolopyridinone class of compounds that display potent inhibitory activity against Cdc7 kinase. Furthermore, we also describe the discovery of 89S, [(S)-2-(2-aminopyrimidin-4-yl)-7-(2-fluoro-ethyl)-1,5,6,7-tetrahydropyrrolo[3,2-c]pyridin-4-one], as a potent ATP mimetic inhibitor of Cdc7. Compound 89S has a Ki value of 0.5 nM, inhibits cell proliferation of different tumor cell lines with an IC50 in the submicromolar range, and exhibits in vivo tumor growth inhibition of 68% in the A2780 xenograft model.
Expert Opinion on Therapeutic Patents | 2013
Gianluca Papeo; Elena Casale; Alessia Montagnoli; Alessandra Cirla
Introduction: Inhibitors of the poly(ADP-ribose) polymerases (PARPs) family of proteins are currently being evaluated as potential anticancer medicines at both preclinical and clinical levels. They have the peculiarity to increase the efficacy of DNA-damaging agents and to selectively target tumor cells with specific DNA repair defects. This later development of these drugs should make it possible, in principle, to selectively target neoplastic vs healthy cells, thus realizing the Ehrlichs magic bullet concept of a personalized and tailored cure of diseases. Areas covered: This review is designed to provide the readers with a brief summary and an update on PARP inhibitors in the oncology field, by covering the recent patent literature (2010 – 2012: and Questel Intellectual Property Portal [QPat] database search). Expert opinion: Presently, along with a number of preclinical candidates, there are eight PARP inhibitors in the clinic as either single agents or in combination with various chemotherapy and radiotherapy regimens. The tremendous efforts underneath those results testify the high interest on the target. The investigation and understanding of the cross-reactivity among members of the PARPs family as well as a deeper knowledge of their biological functions may lead to a more profound characterization of the PARP inhibitors profile. This, in turn, will cast additional light on this exciting approach in treating cancer.
Journal of Medicinal Chemistry | 2010
Maria Menichincheri; Clara Albanese; Cristina Alli; Dario Ballinari; Alberto Bargiotti; Marina Caldarelli; Antonella Ciavolella; Alessandra Cirla; Maristella Colombo; Francesco Colotta; Valter Croci; Roberto D’Alessio; Matteo D’Anello; Antonella Ermoli; Francesco Fiorentini; Barbara Forte; Arturo Galvani; Patrizia Giordano; Antonella Isacchi; Katia Martina; Antonio Molinari; Jürgen Moll; Alessia Montagnoli; Paolo Orsini; Fabrizio Orzi; Enrico Pesenti; Antonio Pillan; Fulvia Roletto; Alessandra Scolaro; Marco Tato
Cdc7 serine/threonine kinase is a key regulator of DNA synthesis in eukaryotic organisms. Cdc7 inhibition through siRNA or prototype small molecules causes p53 independent apoptosis in tumor cells while reversibly arresting cell cycle progression in primary fibroblasts. This implies that Cdc7 kinase could be considered a potential target for anticancer therapy. We previously reported that pyrrolopyridinones (e.g., 1) are potent and selective inhibitors of Cdc7 kinase, with good cellular potency and in vitro ADME properties but with suboptimal pharmacokinetic profiles. Here we report on a new chemical class of 5-heteroaryl-3-carboxamido-2-substituted pyrroles (1A) that offers advantages of chemistry diversification and synthetic simplification. This work led to the identification of compound 18, with biochemical data and ADME profile similar to those of compound 1 but characterized by superior efficacy in an in vivo model. Derivative 18 represents a new lead compound worthy of further investigation toward the ultimate goal of identifying a clinical candidate.
Journal of Medicinal Chemistry | 2009
Antonella Ermoli; Alberto Bargiotti; Maria Gabriella Brasca; Antonella Ciavolella; Nicoletta Colombo; Gabriele Fachin; Antonella Isacchi; Maria Menichincheri; Antonio Molinari; Alessia Montagnoli; Antonio Pillan; Sonia Rainoldi; Federico Riccardi Sirtori; Francesco Sola; Sandrine Thieffine; Marcellino Tibolla; Barbara Valsasina; Daniele Volpi; Corrado Santocanale; Ermes Vanotti
Cdc7 kinase has recently emerged as an attractive target for cancer therapy and low-molecular-weight inhibitors of Cdc7 kinase have been found to be effective in the inhibition of tumor growth in animal models. In this paper, we describe synthesis and structure-activity relationships of new 1H-pyrrolo[2,3-b]pyridine derivatives identified as inhibitors of Cdc7 kinase. Progress from (Z)-2-phenyl-5-(1H-pyrrolo[2,3-b]pyridin-3-ylmethylene)-3,5-dihydro-4H-imidazol-4-one (1) to [(Z)-2-(benzylamino)-5-(1H-pyrrolo[2,3-b]pyridin-3-ylmethylene)-1,3-thiazol-4(5H)-one] (42), a potent ATP mimetic inhibitor of Cdc7 kinase with IC(50) value of 7 nM, is also reported.