Alessia Nasca
Carlo Besta Neurological Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alessia Nasca.
Human Mutation | 2014
Daria Diodato; Laura Melchionda; Tobias B. Haack; Cristina Dallabona; Enrico Baruffini; Claudia Donnini; Tiziana Granata; Francesca Ragona; Paolo Balestri; Maria Margollicci; Eleonora Lamantea; Alessia Nasca; Christopher A. Powell; Michal Minczuk; Tim M. Strom; Thomas Meitinger; Holger Prokisch; Costanza Lamperti; Massimo Zeviani; Daniele Ghezzi
By way of whole‐exome sequencing, we identified a homozygous missense mutation in VARS2 in one subject with microcephaly and epilepsy associated with isolated deficiency of the mitochondrial respiratory chain (MRC) complex I and compound heterozygous mutations in TARS2 in two siblings presenting with axial hypotonia and severe psychomotor delay associated with multiple MRC defects. The nucleotide variants segregated within the families, were absent in Single Nucleotide Polymorphism (SNP) databases and are predicted to be deleterious. The amount of VARS2 and TARS2 proteins and valyl‐tRNA and threonyl‐tRNA levels were decreased in samples of afflicted patients according to the genetic defect. Expression of the corresponding wild‐type transcripts in immortalized mutant fibroblasts rescued the biochemical impairment of mitochondrial respiration and yeast modeling of the VARS2 mutation confirmed its pathogenic role. Taken together, these data demonstrate the role of the identified mutations for these mitochondriopathies. Our study reports the first mutations in the VARS2 and TARS2 genes, which encode two mitochondrial aminoacyl‐tRNA synthetases, as causes of clinically distinct, early‐onset mitochondrial encephalopathies.
American Journal of Human Genetics | 2015
Aurelio Reyes; Laura Melchionda; Alessia Nasca; Franco Carrara; Eleonora Lamantea; Alice Zanolini; Costanza Lamperti; Mingyan Fang; Jianguo Zhang; Dario Ronchi; S. Bonato; Gigliola Fagiolari; Maurizio Moggio; Daniele Ghezzi; Massimo Zeviani
Chronic progressive external ophthalmoplegia (CPEO) is common in mitochondrial disorders and is frequently associated with multiple mtDNA deletions. The onset is typically in adulthood, and affected subjects can also present with general muscle weakness. The underlying genetic defects comprise autosomal-dominant or recessive mutations in several nuclear genes, most of which play a role in mtDNA replication. Next-generation sequencing led to the identification of compound-heterozygous RNASEH1 mutations in two singleton subjects and a homozygous mutation in four siblings. RNASEH1, encoding ribonuclease H1 (RNase H1), is an endonuclease that is present in both the nucleus and mitochondria and digests the RNA component of RNA-DNA hybrids. Unlike mitochondria, the nucleus harbors a second ribonuclease (RNase H2). All affected individuals first presented with CPEO and exercise intolerance in their twenties, and these were followed by muscle weakness, dysphagia, and spino-cerebellar signs with impaired gait coordination, dysmetria, and dysarthria. Ragged-red and cytochrome c oxidase (COX)-negative fibers, together with impaired activity of various mitochondrial respiratory chain complexes, were observed in muscle biopsies of affected subjects. Western blot analysis showed the virtual absence of RNase H1 in total lysate from mutant fibroblasts. By an in vitro assay, we demonstrated that altered RNase H1 has a reduced capability to remove the RNA from RNA-DNA hybrids, confirming their pathogenic role. Given that an increasing amount of evidence indicates the presence of RNA primers during mtDNA replication, this result might also explain the accumulation of mtDNA deletions and underscores the importance of RNase H1 for mtDNA maintenance.
Embo Molecular Medicine | 2014
Elena Perli; Carla Giordano; Annalinda Pisano; Arianna Montanari; Antonio Francesco Campese; Aurelio Reyes; Daniele Ghezzi; Alessia Nasca; Helen A. Tuppen; Maurizia Orlandi; Patrizio Di Micco; Elena Poser; Robert W. Taylor; Gianni Colotti; Silvia Francisci; Veronica Morea; Laura Frontali; Massimo Zeviani; Giulia d'Amati
Mitochondrial (mt) diseases are multisystem disorders due to mutations in nuclear or mtDNA genes. Among the latter, more than 50% are located in transfer RNA (tRNA) genes and are responsible for a wide range of syndromes, for which no effective treatment is available at present. We show that three human mt aminoacyl‐tRNA syntethases, namely leucyl‐, valyl‐, and isoleucyl‐tRNA synthetase are able to improve both viability and bioenergetic proficiency of human transmitochondrial cybrid cells carrying pathogenic mutations in the mt‐tRNAIle gene. Importantly, we further demonstrate that the carboxy‐terminal domain of human mt leucyl‐tRNA synthetase is both necessary and sufficient to improve the pathologic phenotype associated either with these “mild” mutations or with the “severe” m.3243A>G mutation in the mt‐tRNALeu(UUR) gene. Furthermore, we provide evidence that this small, non‐catalytic domain is able to directly and specifically interact in vitro with human mt‐tRNALeu(UUR) with high affinity and stability and, with lower affinity, with mt‐tRNAIle. Taken together, our results sustain the hypothesis that the carboxy‐terminal domain of human mt leucyl‐tRNA synthetase can be used to correct mt dysfunctions caused by mt‐tRNA mutations.
European Journal of Human Genetics | 2016
Daria Diodato; Giorgio A. Tasca; Daniela Verrigni; Adele D'Amico; Teresa Rizza; Giulia Tozzi; Diego Martinelli; Margherita Verardo; Federica Invernizzi; Alessia Nasca; Emanuele Bellacchio; Daniele Ghezzi; Fiorella Piemonte; Carlo Dionisi-Vici; Rosalba Carrozzo; Enrico Bertini
AIFM1 is a gene located on the X chromosome, coding for AIF (Apoptosis-Inducing Factor), a mitochondrial flavoprotein involved in caspase-independent cell death. AIFM1 mutations have been associated with different clinical phenotypes: a severe infantile encephalopathy with combined oxidative phosphorylation deficiency and the Cowchock syndrome, an X-linked Charcot-Marie-Tooth disease (CMTX4) with axonal sensorimotor neuropathy, deafness and cognitive impairment. In two male cousins with early-onset mitochondrial encephalopathy and cytochrome c oxidase (COX) deficiency, we identified a novel AIFM1 mutation. Muscle biopsies and electromyography in both patients showed signs of severe denervation. Our patients manifested a phenotype that included signs of both cortical and motor neuron involvement. These observations emphasize the role of AIF in the development and function of neurons.
Human Mutation | 2016
Alessia Nasca; Andrea Legati; Enrico Baruffini; Cecilia Nolli; Isabella Moroni; Anna Ardissone; Daniele Ghezzi
Mitochondria are highly dynamic organelles, undergoing continuous fission and fusion, and mitochondrial dynamics is important for several cellular functions. DNM1L is the most important mediator of mitochondrial fission, with a role also in peroxisome division. Few reports of patients with genetic defects in DNM1L have been published, most of them describing de novo dominant mutations. We identified compound heterozygous DNM1L variants in two brothers presenting with an infantile slowly progressive neurological impairment. One variant was a frame‐shift mutation, the other was a missense change, the pathogenicity of which was validated in a yeast model. Fluorescence microscopy revealed abnormally elongated mitochondria and aberrant peroxisomes in mutant fibroblasts, indicating impaired fission of these organelles. In conclusion, we described a recessive disease caused by DNM1L mutations, with a clinical phenotype resembling mitochondrial disorders but without any biochemical features typical of these syndromes (lactic acidosis, respiratory chain complex deficiency) or indicating a peroxisomal disorder.
Frontiers in Genetics | 2014
Laura Melchionda; Nadirah Damseh; Bassam Y. Abu Libdeh; Alessia Nasca; Orly Elpeleg; Alice Zanolini; Daniele Ghezzi
Isolated complex III (cIII) deficiency is a rare biochemical finding in mitochondrial disorders, mainly associated with mutations in mitochondrial DNA MTCYB gene, encoding cytochrome b, or in assembly factor genes (BCS1L, TTC19, UQCC2, and LYRM7), whereas mutations in nuclear genes encoding cIII structural subunits are extremely infrequent. We report here a patient, a 9 year old female born from first cousin related parents, with normal development till 18 months when she showed unsteady gait with frequent falling down, cognitive, and speech worsening. Her course deteriorated progressively. Brain MRI showed cerebellar vermis hypoplasia and bilateral lentiform nucleus high signal lesions. Now she is bed ridden with tetraparesis and severely impaired cognitive and language functions. Biochemical analysis revealed isolated cIII deficiency in muscle, and impaired respiration in fibroblasts. We identified a novel homozygous rearrangement in TTC19 (c.213_229dup), resulting in frameshift with creation of a premature termination codon (p.Gln77Argfs*30). Western blot analysis demonstrated the absence of TTC19 protein in patient’s fibroblasts, while Blue-Native Gel Electrophoresis analysis revealed the presence of cIII-specific assembly intermediates. Mutations in TTC19 have been rarely associated with mitochondrial disease to date, being described in about ten patients with heterogeneous clinical presentations, ranging from early onset encephalomyopathy to adult forms with cerebellar ataxia. Contrariwise, the biochemical defect was a common hallmark in TTC19 mutant patients, confirming the importance of TTC19 in cIII assembly/stability. Therefore, we suggest extending the TTC19 mutational screening to all patients with cIII deficiency, independently from their phenotypes.
Human Mutation | 2017
Alessia Nasca; C. Scotton; I. Zaharieva; Marcella Neri; Rita Selvatici; Olafur Thor Magnusson; Aniko Gal; David Weaver; Rachele Rossi; A. Armaroli; Marika Pane; Rahul Phadke; Anna Sarkozy; Francesco Muntoni; Imelda Hughes; Antonella Cecconi; György Hajnóczky; Alice Donati; Eugenio Mercuri; Massimo Zeviani; Alessandra Ferlini; Daniele Ghezzi
We report here the first families carrying recessive variants in the MSTO1 gene: compound heterozygous mutations were identified in two sisters and in an unrelated singleton case, who presented a multisystem complex phenotype mainly characterized by myopathy and cerebellar ataxia. Human MSTO1 is a poorly studied protein, suggested to have mitochondrial localization and to regulate morphology and distribution of mitochondria. As for other mutations affecting genes involved in mitochondrial dynamics, no biochemical defects typical of mitochondrial disorders were reported. Studies in patients’ fibroblasts revealed that MSTO1 protein levels were strongly reduced, the mitochondrial network was fragmented, and the fusion events among mitochondria were decreased, confirming the deleterious effect of the identified variants and the role of MSTO1 in modulating mitochondrial dynamics. We also found that MSTO1 is mainly a cytosolic protein. These findings indicate recessive mutations in MSTO1 as a new cause for inherited neuromuscular disorders with multisystem features.
Orphanet Journal of Rare Diseases | 2017
Alessia Nasca; Teresa Rizza; Mara Doimo; Andrea Legati; Andrea Ciolfi; Daria Diodato; Cristina Calderan; Gianfranco Carrara; Eleonora Lamantea; Chiara Aiello; Michela Di Nottia; Marcello Niceta; Costanza Lamperti; Anna Ardissone; Stefania Bianchi-Marzoli; Giancarlo Iarossi; Enrico Bertini; Isabella Moroni; Marco Tartaglia; Leonardo Salviati; Rosalba Carrozzo; Daniele Ghezzi
BackgroundHeterozygous mutations in OPA1 are a common cause of autosomal dominant optic atrophy, sometimes associated with extra-ocular manifestations. Few cases harboring compound heterozygous OPA1 mutations have been described manifesting complex neurodegenerative disorders in addition to optic atrophy.ResultsWe report here three patients: one boy showing an early-onset mitochondrial disorder with hypotonia, ataxia and neuropathy that was severely progressive, leading to early death because of multiorgan failure; two unrelated sporadic girls manifesting a spastic ataxic syndrome associated with peripheral neuropathy and, only in one, optic atrophy. Using a targeted resequencing of 132 genes associated with mitochondrial disorders, in two probands we found compound heterozygous mutations in OPA1: in the first a 5 nucleotide deletion, causing a frameshift and insertion of a premature stop codon (p.Ser64Asnfs*7), and a missense change (p.Ile437Met), which has recently been reported to have clinical impact; in the second, a novel missense change (p.Val988Phe) co-occurred with the p.Ile437Met substitution. In the third patient a homozygous mutation, c.1180G > A (p.Ala394Thr) in OPA1 was detected by a trio-based whole exome sequencing approach. One of the patients presented also variants in mitochondrial DNA that may have contributed to the peculiar phenotype.The deleterious effect of the identified missense changes was experimentally validated in yeast model. OPA1 level was reduced in available patients’ biological samples, and a clearly fragmented mitochondrial network was observed in patients’ fibroblasts.ConclusionsThis report provides evidence that bi-allelic OPA1 mutations may lead to complex and severe multi-system recessive mitochondrial disorders, where optic atrophy might not represent the main feature.
Neurology Genetics | 2017
Nathan McNeill; Alessia Nasca; Aurelio Reyes; Benjamin Lemoine; Brandi L. Cantarel; Adeline Vanderver; Raphael Schiffmann; Daniele Ghezzi
Objective: To investigate the genetic etiology of a patient diagnosed with leukoencephalopathy, brain calcifications, and cysts (LCC). Methods: Whole-exome sequencing was performed on a patient with LCC and his unaffected family members. The variants were subject to in silico and in vitro functional testing to determine pathogenicity. Results: Whole-exome sequencing uncovered compound heterozygous mutations in EARS2, c.328G>A (p.G110S), and c.1045G>A (p.E349K). This gene has previously been implicated in the autosomal recessive leukoencephalopathy with thalamus and brainstem involvement and high lactate (LTBL). The p.G110S mutation has been found in multiple patients with LTBL. In silico analysis supported pathogenicity in the second variant. In vitro functional testing showed a significant mitochondrial dysfunction demonstrated by an ∼11% decrease in the oxygen consumption rate and ∼43% decrease in the maximum respiratory rate in the patients skin fibroblasts compared with the control. EARS2 protein levels were reduced to 30% of normal controls in the patients fibroblasts. These deficiencies were corrected by the expression of the wild-type EARS2 protein. However, a further unrelated genetic investigation of our patient revealed the presence of biallelic variants in a small nucleolar RNA (SNORD118) responsible for LCC. Conclusions: Here, we report seemingly pathogenic EARS2 mutations in a single patient with LCC with no biochemical or neuroimaging presentations of LTBL. This patient illustrates that variants with demonstrated impact on protein function should not necessarily be considered clinically relevant. ClinicalTrials.gov identifier: NCT00001671.
Molecular genetics and metabolism reports | 2015
Anna Ardissone; Federica Invernizzi; Alessia Nasca; Isabella Moroni; Laura Farina; Daniele Ghezzi
Mitochondrial disease involving complex II is rare among respiratory chain deficiencies and its genetic cause remains often unknown. Two main clinical presentations are associated with this biochemical defect: mitochondrial encephalomyopathy and susceptibility to tumors. Only one homozygous SDHB mutation has been described in a patient with mitochondrial disorder. We report here two sisters, who presented highly different phenotypes (neurological impairment with leukoencephalopathy vs. asymptomatic status) and harbored the same homozygous SDHB mutation, suggesting reduced penetrance.
Collaboration
Dive into the Alessia Nasca's collaboration.
Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico
View shared research outputs