Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alessio Travaglia is active.

Publication


Featured researches published by Alessio Travaglia.


The Journal of Neuroscience | 2014

A positive autoregulatory BDNF feedback loop via C/EBPβ mediates hippocampal memory consolidation.

Dhananjay Bambah-Mukku; Alessio Travaglia; Dillon Y. Chen; Gabriella Pollonini; Cristina M. Alberini

Little is known about the temporal progression and regulation of the mechanisms underlying memory consolidation. Brain-derived-neurotrophic-factor (BDNF) has been shown to mediate the maintenance of memory consolidation, but the mechanisms of this regulation remain unclear. Using inhibitory avoidance (IA) in rats, here we show that a hippocampal BDNF-positive autoregulatory feedback loop via CCAAT-enhancer binding protein β (C/EBPβ) is necessary to mediate memory consolidation. At training, a very rapid, learning-induced requirement of BDNF accompanied by rapid de novo translation controls the induction of a persistent activation of cAMP-response element binding-protein (CREB) and C/EBPβ expression. The latter, in turn, controls an increase in expression of bdnf exon IV transcripts and BDNF protein, both of which are necessary and, together with the initial BDNF requirement, mediate memory consolidation. The autoregulatory loop terminates by 48 h after training with decreased C/EBPβ and pCREB and increased methyl-CpG binding protein-2, histone-deacetylase-2, and switch-independent-3a binding at the bdnf exon IV promoter.


Nature Neuroscience | 2017

Direct dorsal hippocampal-prelimbic cortex connections strengthen fear memories

Xiaojing Ye; Dana Kapeller-Libermann; Alessio Travaglia; M Carmen Inda; Cristina M. Alberini

The ability to regulate the consolidation and strengthening of memories for threatening experiences is critical for mental health, and its dysregulation may lead to psychopathologies. Re-exposure to the context in which the threat was experienced can either increase or decrease fear response through distinct processes known, respectively, as reconsolidation or extinction. Using a context retrieval-dependent memory-enhancement model in rats, we report that memory strengthens through activation of direct projections from dorsal hippocampus to prelimbic (PL) cortex and activation of critical PL molecular mechanisms that are not required for extinction. Furthermore, while sustained PL brain-derived neurotrophic factor (BDNF) expression is required for memory consolidation, retrieval engages PL BDNF to regulate excitatory and inhibitory synaptic proteins neuroligin 1 and neuroligin 2, which promote memory strengthening while inhibiting extinction. Thus, context retrieval-mediated fear-memory enhancement results from a concerted action of mechanisms that strengthen memory through reconsolidation while suppressing extinction.


The Journal of Neuroscience | 2015

From memory impairment to posttraumatic stress disorder-like phenotypes: The critical role of an unpredictable second traumatic experience

Charles Finsterwald; Adam B. Steinmetz; Alessio Travaglia; Cristina M. Alberini

Arousal and stress critically regulate memory formation and retention. Increasing levels of stress produce an inverted U-shaped effect on cognitive performance, including the retention of explicit memories, and experiencing a severe stress during a traumatic event may lead to posttraumatic stress disorder (PTSD). The molecular mechanisms underlying the impairing effect of a severe stress on memory and the key contribution of traumatic experiences toward the development of PTSD are still unknown. Here, using increasing footshock intensities in an inhibitory avoidance paradigm, we reproduced the inverted U-shaped curve of memory performance in rats. We then show that the inverted U profile of memory performance correlates with an inverted U profile of corticosterone level in the circulation and of brain-derived neurotrophic factor, phosphorylated tropomyosin-receptor kinase B, and methyl CpG binding protein in the dorsal hippocampus. Furthermore, training with the highest footshock intensity (traumatic experience) led to a significant elevation of hippocampal glucocorticoid receptors. Exposure to an unpredictable, but not to a predictable, highly stressful reminder shock after a first traumatic experience resulted in PTSD-like phenotypes, including increased memory of the trauma, high anxiety, threat generalization, and resistance to extinction. Systemic corticosterone injection immediately after the traumatic experience, but not 3 d later, was sufficient to produce PTSD-like phenotypes. We suggest that, although after a first traumatic experience a suppression of the corticosterone-dependent response protects against the development of an anxiety disorder, experiencing more than one trauma (multiple hits) is a critical contributor to the etiology of PTSD. SIGNIFICANCE STATEMENT Increasing levels of stress produce an inverted U-shaped effect on memory retention. Humans experiencing an acute trauma may develop posttraumatic stress disorder (PTSD), but the key contributions of trauma to PTSD formation are still unknown. This study in rats shows that a single traumatic experience leads to memory impairment, accompanied by blunted activations of circulating corticosterone and of plasticity molecular changes in the hippocampus. Experiencing a traumatic, unpredictable reminder, but not a repetition of the same trauma (predictable), leads to high anxiety, threat memory generalization, and extinction failure, typical responses of anxiety disorders and PTSD. Thus, although a first trauma elicits inhibiting responses, which may be protective, experiencing more than one unpredictable trauma is a critical contributor of PTSD etiology.


Neurobiology of Learning and Memory | 2016

Developmental changes in plasticity, synaptic, glia and connectivity protein levels in rat dorsal hippocampus.

Alessio Travaglia; Reto Bisaz; Emmanuel Cruz; Cristina M. Alberini

Thus far the identification and functional characterization of the molecular mechanisms underlying synaptic plasticity, learning, and memory have not been particularly dissociated from the contribution of developmental changes. Brain plasticity mechanisms have been largely identified and studied using in vitro systems mainly derived from early developmental ages, yet they are considered to be general plasticity mechanisms underlying functions -such as long-term memory- that occurs in the adult brain. Although it is possible that part of the plasticity mechanisms recruited during development is then re-recruited in plasticity responses in adulthood, systematic investigations about whether and how activity-dependent molecular responses differ over development are sparse. Notably, hippocampal-dependent memories are expressed relatively late in development, and the hippocampus undergoes and extended developmental post-natal structural and functional maturation, suggesting that the molecular mechanisms underlying hippocampal neuroplasticity may actually significantly change over development. Here we quantified the relative basal expression levels of sets of plasticity, synaptic, glia and connectivity proteins in rat dorsal hippocampus, a region that is critical for the formation of long-term explicit memories, at two developmental ages, postnatal day 17 (PN17) and PN24, which correspond to a period of relative functional immaturity and maturity, respectively, and compared them to adult age. We found that the levels of numerous proteins and/or their phosphorylation, known to be critical for synaptic plasticity underlying memory formation, including immediate early genes (IEGs), kinases, transcription factors and AMPA receptor subunits, peak at PN17 when the hippocampus is not yet able to express long-term memory. It remains to be established if these changes result from developmental basal activity or infantile learning. Conversely, among all markers investigated, the phosphorylation of calcium calmodulin kinase II α (CamKII α and of extracellular signal-regulated kinases 2 (ERK-2), and the levels of GluA1 and GluA2 significantly increase from PN17 to PN24 and then remain similar in adulthood, thus representing correlates paralleling long-term memory expression ability.


The Journal of Neuroscience | 2017

Infantile Amnesia: A Critical Period of Learning to Learn and Remember

Cristina M. Alberini; Alessio Travaglia

Infantile amnesia, the inability of adults to recollect early episodic memories, is associated with the rapid forgetting that occurs in childhood. It has been suggested that infantile amnesia is due to the underdevelopment of the infant brain, which would preclude memory consolidation, or to deficits in memory retrieval. Although early memories are inaccessible to adults, early-life events, such as neglect or aversive experiences, can greatly impact adult behavior and may predispose individuals to various psychopathologies. It remains unclear how a brain that rapidly forgets, or is not yet able to form long-term memories, can exert such a long-lasting and important influence. Here, with a particular focus on the hippocampal memory system, we review the literature and discuss new evidence obtained in rats that illuminates the paradox of infantile amnesia. We propose that infantile amnesia reflects a developmental critical period during which the learning system is learning how to learn and remember.


Journal of Inorganic Biochemistry | 2016

The neglected role of copper ions in wound healing

Allison Paige Kornblatt; Vincenzo Giuseppe Nicoletti; Alessio Travaglia

Wound healing is a complex biological process that aims to repair damaged tissue. Even though many biological and biochemical mechanisms associated with the steps of physiological wound healing are known, there is still significant morbidity and mortality due to dysregulation of physiological mechanisms. It might be useful to revise the activity of old players and their links with new, often neglected, molecular entities. This review revises new findings supporting the hypothesis that copper ions regulate the activity and/or the expression of proteins crucially involved in the wound repair process. A better understanding of these interactions might suggest potential new targets for therapeutic intervention on scars or non-healing wounds.


Psychopathology | 2014

The neurobiological bases of memory formation: from physiological conditions to psychopathology.

Reto Bisaz; Alessio Travaglia; Cristina M. Alberini

The formation of long-term memories is a function necessary for an adaptive survival. In the last two decades, great progress has been made in the understanding of the biological bases of memory formation. The identification of mechanisms necessary for memory consolidation and reconsolidation, the processes by which the posttraining and postretrieval fragile memory traces become stronger and insensitive to disruption, has indicated new approaches for investigating and treating psychopathologies. In this review, we will discuss some key biological mechanisms found to be critical for memory consolidation and strengthening, the role/s and mechanisms of memory reconsolidation, and how the interference with consolidation and/or reconsolidation can modulate the retention and/or storage of memories that are linked to psychopathologies.


Physical Chemistry Chemical Physics | 2016

Neurotrophin-mimicking peptides at the biointerface with gold respond to copper ion stimuli

Cristina Satriano; Giuseppe Forte; Antonio Magrì; P. Di Pietro; Alessio Travaglia; Giuseppe Pandini; F. Gianì; D. La Mendola

The peptide fragments NGF1-14 and BDNF1-12, encompassing the N-terminal domains, respectively, of the proteins nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) were used in this study for the fabrication of a hybrid gold/peptide biointerface. These peptides mimic the Trk receptor activation of the respective whole protein - with a crucial role played by copper ions - and exhibit, in bulk solution, a pH-dependent capability to complex copper. We demonstrate here the maintenance of peptide-specific responses at different pH values as well as the copper binding also for the adlayers formed upon physisorption at the gold surface. The physicochemical properties, including viscoelastic behavior of the adlayer and competitive vs. synergic interactions in sequential adsorption processes, were addressed both experimentally, by quartz crystal microbalance with dissipation monitoring (QCM-D) and circular dichroism (CD), and theoretically, by molecular dynamics (MD) calculations. Proof-of work biological assays with the neuroblastoma SY-SH5H cell line demonstrated that the developed hybrid Au/peptide nanoplatforms are very promising for implementation in pH- and metal-responsive systems for application in nanomedicine.


Frontiers in Neuroscience | 2016

The Inorganic Side of NGF: Copper(II) and Zinc(II) Affect the NGF Mimicking Signaling of the N-Terminus Peptides Encompassing the Recognition Domain of TrkA Receptor.

Giuseppe Pandini; Cristina Satriano; Adriana Pietropaolo; Fiorenza Gianì; Alessio Travaglia; Diego La Mendola; Vincenzo Giuseppe Nicoletti; E. Rizzarelli

The nerve growth factor (NGF) N-terminus peptide, NGF(1–14), and its acetylated form, Ac-NGF(1–14), were investigated to scrutinize the ability of this neurotrophin domain to mimic the whole protein. Theoretical calculations demonstrated that non-covalent forces assist the molecular recognition of TrkA receptor by both peptides. Combined parallel tempering/docking simulations discriminated the effect of the N-terminal acetylation on the recognition of NGF(1–14) by the domain 5 of TrkA (TrkA-D5). Experimental findings demonstrated that both NGF(1–14) and Ac-NGF(1–14) activate TrkA signaling pathways essential for neuronal survival. The NGF-induced TrkA internalization was slightly inhibited in the presence of Cu2+ and Zn2+ ions, whereas the metal ions elicited the NGF(1–14)-induced internalization of TrkA and no significant differences were found in the weak Ac-NGF(1–14)-induced receptor internalization. The crucial role of the metals was confirmed by experiments with the metal-chelator bathocuproine disulfonic acid, which showed different inhibitory effects in the signaling cascade, due to different metal affinity of NGF, NGF(1–14) and Ac-NGF(1–14). The NGF signaling cascade, activated by the two peptides, induced CREB phosphorylation, but the copper addition further stimulated the Akt, ERK and CREB phosphorylation in the presence of NGF and NGF(1–14) only. A dynamic and quick influx of both peptides into PC12 cells was tracked by live cell imaging with confocal microscopy. A significant role of copper ions was found in the modulation of peptide sub-cellular localization, especially at the nuclear level. Furthermore, a strong copper ionophoric ability of NGF(1–14) was measured. The Ac-NGF(1–14) peptide, which binds copper ions with a lower stability constant than NGF(1–14), exhibited a lower nuclear localization with respect to the total cellular uptake. These findings were correlated to the metal-induced increase of CREB and BDNF expression caused by NGF(1–14) stimulation. In summary, we here validated NGF(1–14) and Ac-NGF(1–14) as first examples of monomer and linear peptides able to activate the NGF-TrkA signaling cascade. Metal ions modulated the activity of both NGF protein and the NGF-mimicking peptides. Such findings demonstrated that NGF(1–14) sequence can reproduce the signal transduction of whole protein, therefore representing a very promising drug candidate for further pre-clinical studies.


Learning & Memory | 2018

Developmental changes in plasticity, synaptic, glia, and connectivity protein levels in rat medial prefrontal cortex

Margaret Jia; Alessio Travaglia; Gabriella Pollonini; Giuseppe Fedele; Cristina M. Alberini

The medial prefrontal cortex (mPFC) plays a critical role in complex brain functions including decision-making, integration of emotional, and cognitive aspects in memory processing and memory consolidation. Because relatively little is known about the molecular mechanisms underlying its development, we quantified rat mPFC basal expression levels of sets of plasticity, synaptic, glia, and connectivity proteins at different developmental ages. Specifically, we compared the mPFC of rats at postnatal day 17 (PN17), when they are still unable to express long-term contextual and spatial memories, to rat mPFC at PN24, when they have acquired the ability of long-term memory expression and finally to the mPFC of adult rats. We found that, with increased age, there are remarkable and significant decreases in markers of cell activation and significant increases in proteins that mark synaptogenesis and synapse maturation. Furthermore, we found significant changes in structural markers over the ages, suggesting that structural connectivity of the mPFC increases over time. Finally, the substantial biological difference in mPFC at different ages suggest caution in extrapolating conclusions from brain plasticity studies conducted at different developmental stages.

Collaboration


Dive into the Alessio Travaglia's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

E. Rizzarelli

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gabriella Pollonini

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge