Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gabriella Pollonini is active.

Publication


Featured researches published by Gabriella Pollonini.


Nature | 2011

A critical role for IGF-II in memory consolidation and enhancement

Dillon Y. Chen; Sarah A. Stern; Ana García-Osta; Bernadette Saunier-Rebori; Gabriella Pollonini; Dhananjay Bambah-Mukku; Robert D. Blitzer; Cristina M. Alberini

We report that, in the rat, administering insulin-like growth factor II (IGF-II, also known as IGF2) significantly enhances memory retention and prevents forgetting. Inhibitory avoidance learning leads to an increase in hippocampal expression of IGF-II, which requires the transcription factor CCAAT enhancer binding protein β and is essential for memory consolidation. Furthermore, injections of recombinant IGF-II into the hippocampus after either training or memory retrieval significantly enhance memory retention and prevent forgetting. To be effective, IGF-II needs to be administered within a sensitive period of memory consolidation. IGF-II-dependent memory enhancement requires IGF-II receptors, new protein synthesis, the function of activity-regulated cytoskeletal-associated protein and glycogen-synthase kinase 3 (GSK3). Moreover, it correlates with a significant activation of synaptic GSK3β and increased expression of GluR1 (also known as GRIA1) α-amino-3-hydroxy-5-methyl-4-isoxasolepropionic acid receptor subunits. In hippocampal slices, IGF-II promotes IGF-II receptor-dependent, persistent long-term potentiation after weak synaptic stimulation. Thus, IGF-II may represent a novel target for cognitive enhancement therapies.


Nature Neuroscience | 2012

Glucocorticoid receptors recruit the CaMKIIα-BDNF-CREB pathways to mediate memory consolidation

Dillon Y. Chen; Dhananjay Bambah-Mukku; Gabriella Pollonini; Cristina M. Alberini

Emotionally important events are well remembered. Although memories of emotional experiences are known to be mediated and modulated by stress hormones such as glucocorticoids, little is known about the underlying molecular mechanisms. We found that the hippocampal glucocorticoid receptors that are critically engaged during the formation of long-term inhibitory avoidance memory in rats were coupled to the activation of CaMKIIα, TrkB, ERK, Akt, PLCγ and CREB, as well as a to a substantial induction of Arc and synaptic GluA1. Most of these changes, which are initiated by a nongenomic effect of glucocorticoid receptors, were also downstream of the activation of brain-derived neurotrophic factor (BDNF). Hippocampal administration of BDNF, but not of other neurotrophins, selectively rescued both the amnesia and the molecular impairments produced by glucocorticoid receptor inhibition. Thus, glucocorticoid receptors mediate long-term memory formation by recruiting the CaMKIIα-BDNF-CREB–dependent neural plasticity pathways.


The Journal of Neuroscience | 2006

MuSK Expressed in the Brain Mediates Cholinergic Responses, Synaptic Plasticity, and Memory Formation

Ana García-Osta; Panayiotis Tsokas; Gabriella Pollonini; Emmanuel M. Landau; Robert D. Blitzer; Cristina M. Alberini

Muscle-specific tyrosine kinase receptor (MuSK) has been believed to be mainly expressed and functional in muscle, in which it mediates the formation of neuromuscular junctions. Here we show that MuSK is expressed in the brain, particularly in neurons, as well as in non-neuronal tissues. We also provide evidence that MuSK expression in the hippocampus is required for memory consolidation, because temporally restricted knockdown after training impairs memory retention. Hippocampal disruption of MuSK also prevents the learning-dependent induction of both cAMP response element binding protein (CREB) phosphorylation and CCAAT enhancer binding protein β (C/EBPβ) expression, suggesting that the role of MuSK during memory consolidation critically involves the CREB–C/EBP pathway. Furthermore, we found that MuSK also plays an important role in mediating hippocampal oscillatory activity in the theta frequency as well as in the induction and maintenance of long-term potentiation, two synaptic responses that correlate with memory formation. We conclude that MuSK plays an important role in brain functions, including memory formation. Therefore, its expression and role are broader than what was believed previously.


The Journal of Neuroscience | 2014

A positive autoregulatory BDNF feedback loop via C/EBPβ mediates hippocampal memory consolidation.

Dhananjay Bambah-Mukku; Alessio Travaglia; Dillon Y. Chen; Gabriella Pollonini; Cristina M. Alberini

Little is known about the temporal progression and regulation of the mechanisms underlying memory consolidation. Brain-derived-neurotrophic-factor (BDNF) has been shown to mediate the maintenance of memory consolidation, but the mechanisms of this regulation remain unclear. Using inhibitory avoidance (IA) in rats, here we show that a hippocampal BDNF-positive autoregulatory feedback loop via CCAAT-enhancer binding protein β (C/EBPβ) is necessary to mediate memory consolidation. At training, a very rapid, learning-induced requirement of BDNF accompanied by rapid de novo translation controls the induction of a persistent activation of cAMP-response element binding-protein (CREB) and C/EBPβ expression. The latter, in turn, controls an increase in expression of bdnf exon IV transcripts and BDNF protein, both of which are necessary and, together with the initial BDNF requirement, mediate memory consolidation. The autoregulatory loop terminates by 48 h after training with decreased C/EBPβ and pCREB and increased methyl-CpG binding protein-2, histone-deacetylase-2, and switch-independent-3a binding at the bdnf exon IV promoter.


Journal of Neurochemistry | 2002

Profound molecular changes following hippocampal slice preparation: loss of AMPA receptor subunits and uncoupled mRNA/protein expression

Stephen M. Taubenfeld; Kimberly Stevens; Gabriella Pollonini; Jason Ruggiero; Cristina M. Alberini

The acute hippocampal slice preparation is a convenient, in vitro model widely used to study the biological basis of synaptic plasticity. Although slices may preserve their electrophysiological properties for several hours, profound molecular changes in response to the injury caused by the slicing procedure are likely to occur. To determine the magnitude and duration of these changes we examined the post‐slicing expression kinetics of three classes of genes known to be implicated in long‐term synaptic plasticity: glutamate AMPA receptors (GluR), transcription factors and neurotrophins. Slicing resulted in a striking loss of GluR1 and GluR3, but not of GluR2 proteins suggesting that rapid changes in the composition of major neurotransmitter receptors may occur. Slicing caused a significant induction of the transcription factors c‐fos, zif268, CCAAT enhancer binding protein (C/EBP) β and δ mRNAs and of the neurotrophin brain‐derived neurothophic factor (BDNF) mRNA. In contrast, there was no augmentation, and sometimes a decline, in the levels of the corresponding proteins. These data reveal that significant discrepancies exist between the slice preparation and the intact hippocampus in terms of the metabolism of molecular components known to be involved in synaptic plasticity.


Neuroscience | 2008

Abnormal Expression of Synaptic Proteins and Neurotrophin-3 in the Down Syndrome Mouse Model Ts65Dn

Gabriella Pollonini; Virginia Gao; Ausma Rabe; Sonia Palminiello; Giorgio Albertini; Cristina M. Alberini

Down syndrome (DS) results from triplication of the whole or distal part of human chromosome 21. Persons with DS suffer from deficits in learning and memory and cognitive functions in general, and, starting from early development, their brains show dendritic and spine structural alterations and cell loss. These defects concern many cortical brain regions as well as the hippocampus, which is known to play a critical role in memory and cognition. Most of these abnormalities are reproduced in the mouse model Ts65Dn, which is partially trisomic for the mouse chromosome 16 that is homologous to a portion of human chromosome 21. Thus, Ts65Dn is widely utilized as an animal model of DS. To better understand the molecular defects underlying the cognitive and particularly the memory impairments of DS, we investigated whether the expression of several molecules known to play critical roles in long-term synaptic plasticity and long-term memory in a variety of species is dysregulated in either the neonatal brain or adult hippocampus of Ts65Dn mice. We found abnormal expression of the synaptic proteins synaptophysin, microtubule-associated protein 2 (MAP2) and cyclin-dependent kinase 5 (CDK5) and of the neurotrophin-3 (NT-3). Both the neonatal brain and adult hippocampus revealed significant abnormalities. These results suggest that a dysregulation in the expression of neurotrophins as well as proteins involved in synaptic development and plasticity may play a potential role in the neural pathology of DS in humans.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Astrocytic β2-adrenergic receptors mediate hippocampal long-term memory consolidation

Virginia Gao; Akinobu Suzuki; Pierre J. Magistretti; Sylvain Lengacher; Gabriella Pollonini; Michael Q. Steinman; Cristina M. Alberini

Significance Experiences are remembered long-term when these memories are formed in a state of arousal and heightened emotion. The arousal-induced release of noradrenaline is critical for modulating consolidation, the process that establishes long-term memory. Although the effects of pharmacological manipulation of adrenergic signaling on memory stability are already being investigated in the clinical setting, how adrenergic receptors mediate long-term memory consolidation remains unclear. This study reports a previously unidentified mechanism with important translational implications: The noradrenergic receptors that in the hippocampus mediate memory consolidation are β2-adrenergic receptors (β2ARs) expressed in astrocytes. These receptors are necessary for the learning-evoked release of lactate from astrocytes, which then is required to support the neuronal molecular changes essential for long-term memory formation. Emotionally relevant experiences form strong and long-lasting memories by critically engaging the stress hormone/neurotransmitter noradrenaline, which mediates and modulates the consolidation of these memories. Noradrenaline acts through adrenergic receptors (ARs), of which β2-adrenergic receptors (βARs) are of particular importance. The differential anatomical and cellular distribution of βAR subtypes in the brain suggests that they play distinct roles in memory processing, although much about their specific contributions and mechanisms of action remains to be understood. Here we show that astrocytic rather than neuronal β2ARs in the hippocampus play a key role in the consolidation of a fear-based contextual memory. These hippocampal β2ARs, but not β1ARs, are coupled to the training-dependent release of lactate from astrocytes, which is necessary for long-term memory formation and for underlying molecular changes. This key metabolic role of astrocytic β2ARs may represent a novel target mechanism for stress-related psychopathologies and neurodegeneration.


Neuropsychopharmacology | 2014

Enhancement of Memories by Systemic Administration of Insulin-Like Growth Factor II

Sarah A. Stern; Amy S. Kohtz; Gabriella Pollonini; Cristina M. Alberini

To treat cognitive disorders in humans, new effective therapies that can be easily delivered systemically are needed. Previous studies showed that a bilateral injection of insulin-like growth factor II (IGF-II) into the dorsal hippocampus of rats or mice enhances fear memories and facilitates fear extinction. Here, we report that, in mice, systemic treatments with IGF-II given before training significantly enhance the retention and persistence of several types of working, short-term and long-term memories, including fear conditioning, object recognition, object placement, social recognition, and spatial reference memory. IGF-II-mediated memory enhancement does not alter memory flexibility or the ability for new learning and also occurs when IGF-II treatment is given in concert with memory retrieval. Thus IGF-II may represent a potentially important and effective treatment for enhancing human cognitive and executive functions.


The Journal of Neuroscience | 2013

CCAAT Enhancer Binding Protein δ Plays an Essential Role in Memory Consolidation and Reconsolidation

Amy A. Arguello; Xiaojing Ye; Ozlem Bozdagi; Gabriella Pollonini; Sophie Tronel; Dhananjay Bambah-Mukku; George W. Huntley; Daniela Platano; Cristina M. Alberini

A newly formed memory is temporarily fragile and becomes stable through a process known as consolidation. Stable memories may again become fragile if retrieved or reactivated, and undergo a process of reconsolidation to persist and strengthen. Both consolidation and reconsolidation require an initial phase of transcription and translation that lasts for several hours. The identification of the critical players of this gene expression is key for understanding long-term memory formation and persistence. In rats, the consolidation of inhibitory avoidance (IA) memory requires gene expression in both the hippocampus and amygdala, two brain regions that process contextual/spatial and emotional information, respectively; IA reconsolidation requires de novo gene expression in the amygdala. Here we report that, after IA learning, the levels of the transcription factor CCAAT enhancer binding protein δ (C/EBPδ) are significantly increased in both the hippocampus and amygdala. These increases are essential for long-term memory consolidation, as their blockade via antisense oligodeoxynucleotide-mediated knockdown leads to memory impairment. Furthermore, C/EBPδ is upregulated and required in the amygdala for IA memory reconsolidation. C/EBPδ is found in nuclear, somatic, and dendritic compartments, and a dendritic localization of C/EBPδ mRNA in hippocampal neuronal cultures suggests that this transcription factor may be translated at synapses. Finally, the induction of long-term potentiation at CA3-CA1 synapses by tetanic stimuli in acute slices, a cellular model of long-term memory, leads to an accumulation of C/EBPδ in the nucleus. We conclude that the transcription factor C/EBPδ plays a critical role in memory consolidation and reconsolidation.


Neurobiology of Aging | 2016

Insulin-like growth factor 2 rescues aging-related memory loss in rats.

Adam B. Steinmetz; Sarah A. Johnson; Dylan E. Iannitelli; Gabriella Pollonini; Cristina M. Alberini

Aging is accompanied by declines in memory performance, and particularly affects memories that rely on hippocampal-cortical systems, such as episodic and explicit. With aged populations significantly increasing, the need for preventing or rescuing memory deficits is pressing. However, effective treatments are lacking. Here, we show that the level of the mature form of insulin-like growth factor 2 (IGF-2), a peptide regulated in the hippocampus by learning, required for memory consolidation and a promoter of memory enhancement in young adult rodents, is significantly reduced in hippocampal synapses of aged rats. By contrast, the hippocampal level of the immature form proIGF-2 is increased, suggesting an aging-related deficit in IGF-2 processing. In agreement, aged compared to young adult rats are deficient in the activity of proprotein convertase 2, an enzyme that likely mediates IGF-2 posttranslational processing. Hippocampal administration of the recombinant, mature form of IGF-2 rescues hippocampal-dependent memory deficits and working memory impairment in aged rats. Thus, IGF-2 may represent a novel therapeutic avenue for preventing or reversing aging-related cognitive impairments.

Collaboration


Dive into the Gabriella Pollonini's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dhananjay Bambah-Mukku

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Dillon Y. Chen

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Robert D. Blitzer

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emmanuel M. Landau

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Panayiotis Tsokas

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Sarah A. Stern

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Virginia Gao

Icahn School of Medicine at Mount Sinai

View shared research outputs
Researchain Logo
Decentralizing Knowledge