Alex A. Gorodetsky
Massachusetts Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alex A. Gorodetsky.
robotics science and systems | 2015
Alex A. Gorodetsky; Sertac Karaman; Youssef M. Marzouk
Stochastic optimal control problems frequently arise as motion control problems in the context of robotics. Unfortunately, all existing approaches that guarantee arbitrary precision suffer from the curse of dimensionality: the computational effort invested by the algorithm grows exponentially fast with increasing dimensionality of the state space of the underlying dynamic system governing the robot. In this paper, we propose a novel algorithm that utilizes compressed representations to efficiently solve stochastic optimal control problems with arbitrary precision. The running time of the new algorithms scale linearly with increasing dimensionality of the state space! The running time also depends polynomially on the “rank” of the value function, a measure that quantifies the intrinsic geometric complexity of the value function, due to the geometry and physics embedded in the problem instance at hand. The new algorithms are based on the recent analysis and algorithms for tensor decomposition, generalizing matrix decomposition algorithms, e.g., the singular value decomposition, to three or more dimensions. In computational experiments, we show the computational effort of the new algorithm also scales linearly with the discretization resolution of the state space. We also demonstrate the new algorithm on a problem involving the perching of an aircraft, represented by a nonlinear non-holonomic longitudinal model with a sevendimensional state space, the full numerical solution to which was not obtained before. In this example, we estimate that the proposed algorithm runs more than seven orders of magnitude faster, when compared to the naive value iteration.
arXiv: Numerical Analysis | 2016
Alex A. Gorodetsky; Youssef M. Marzouk
This paper examines experimental design procedures used to develop surrogates of computational models, exploring the interplay between experimental designs and approximation algorithms. We focus on two widely used approximation approaches, Gaussian process (GP) regression and non-intrusive polynomial approximation. First, we introduce algorithms for minimizing a posterior integrated variance (IVAR) design criterion for GP regression. Our formulation treats design as a continuous optimization problem that can be solved with gradient-based methods on complex input domains, without resorting to greedy approximations. We show that minimizing IVAR in this way yields point sets with good interpolation properties, and that it enables more accurate GP regression than designs based on entropy minimization or mutual information maximization. Second, using a Mercer kernel/eigenfunction perspective on GP regression, we identify conditions under which GP regression coincides with pseudospectral polynomial approximation. Departures from these conditions can be understood as changes either to the kernel or to the experimental design itself. We then show how IVAR-optimal designs, while sacrificing discrete orthogonality of the kernel eigenfunctions, can yield lower approximation error than orthogonalizing point sets. Finally, we compare the performance of adaptive Gaussian process regression and adaptive pseudospectral approximation for several classes of target functions, identifying features that are favorable to the GP + IVAR approach.
SIAM Journal on Scientific Computing | 2014
Alex A. Gorodetsky; Youssef M. Marzouk
Surrogate models for computational simulations are input-output approximations that allow computationally intensive analyses, such as uncertainty propagation and inference, to be performed efficiently. When a simulation output does not depend smoothly on its inputs, the error and convergence rate of many approximation methods deteriorate substantially. This paper details a method for efficiently localizing discontinuities in the input parameter domain, so that the model output can be approximated as a piecewise smooth function. The approach comprises an initialization phase, which uses polynomial annihilation to assign function values to different regions and thus seed an automated labeling procedure, followed by a refinement phase that adaptively updates a kernel support vector machine representation of the separating surface via active learning. The overall approach avoids structured grids and exploits any available simplicity in the geometry of the separating surface, thus reducing the number of model ...
The International Journal of Robotics Research | 2018
Alex A. Gorodetsky; Sertac Karaman; Youssef M. Marzouk
Motion planning and control problems are embedded and essential in almost all robotics applications. These problems are often formulated as stochastic optimal control problems and solved using dynamic programming algorithms. Unfortunately, most existing algorithms that guarantee convergence to optimal solutions suffer from the curse of dimensionality: the run time of the algorithm grows exponentially with the dimension of the state space of the system. We propose novel dynamic programming algorithms that alleviate the curse of dimensionality in problems that exhibit certain low-rank structure. The proposed algorithms are based on continuous tensor decompositions recently developed by the authors. Essentially, the algorithms represent high-dimensional functions (e.g. the value function) in a compressed format, and directly perform dynamic programming computations (e.g. value iteration, policy iteration) in this format. Under certain technical assumptions, the new algorithms guarantee convergence towards optimal solutions with arbitrary precision. Furthermore, the run times of the new algorithms scale polynomially with the state dimension and polynomially with the ranks of the value function. This approach realizes substantial computational savings in “compressible” problem instances, where value functions admit low-rank approximations. We demonstrate the new algorithms in a wide range of problems, including a simulated six-dimensional agile quadcopter maneuvering example and a seven-dimensional aircraft perching example. In some of these examples, we estimate computational savings of up to 10 orders of magnitude over standard value iteration algorithms. We further demonstrate the algorithms running in real time on board a quadcopter during a flight experiment under motion capture.
SIAM Journal on Scientific Computing | 2018
Boris Kramer; Alex A. Gorodetsky
Subspace-based system identification for dynamical systems is a sound, system-theoretic way to obtain linear, time-invariant system models from data. The interplay of data and systems theory is reflected in the Hankel matrix, a block-structured matrix whose factorization is used for system identification. For systems with many inputs, many outputs, or large time-series of system-response data, established methods based on the singular value decomposition (SVD)---such as the eigensystem realization algorithm (ERA)---are prohibitively expensive. In this paper, we propose an algorithm to reduce the complexity of the ERA from cubic to linear, with respect to the Hankel matrix size. Furthermore, our memory requirements scale at the same rate because we never require loading the entire Hankel matrix into memory. These reductions are realized by replacing the SVD with a CUR decomposition that directly seeks a low-rank approximation of the Hankel matrix. The CUR decomposition is obtained using a maximum-volume--b...
Journal of Computational Physics | 2018
Alex A. Gorodetsky; John Davis Jakeman
Abstract Predictive analysis of complex computational models, such as uncertainty quantification (UQ), must often rely on using an existing database of simulation runs. In this paper we consider the task of performing low-multilinear-rank regression on such a database. Specifically we develop and analyze an efficient gradient computation that enables gradient-based optimization procedures, including stochastic gradient descent and quasi-Newton methods, for learning the parameters of a functional tensor-train (FT). We compare our algorithms with 22 other nonparametric and parametric regression methods on 10 real-world data sets and show that for many physical systems, exploiting low-rank structure facilitates efficient construction of surrogate models. We use a number of synthetic functions to build insight into behavior of our algorithms, including the rank adaptation and group-sparsity regularization procedures that we developed to reduce overfitting. Finally we conclude the paper by building a surrogate of a physical model of a propulsion plant on a naval vessel.
2018 AIAA Non-Deterministic Approaches Conference | 2018
Michael S. Eldred; Gianluca Geraci; Alex A. Gorodetsky; John Davis Jakeman
Within the SEQUOIA project, funded by the DARPA EQUiPS program, we pursue algorithmic approaches that enable comprehensive design under uncertainty, through inclusion of aleatory/parametric and epistemic/model form uncertainties within scalable forward/inverse UQ approaches. These statistical methods are embedded within design processes that manage computational expense through active subspace, multilevel-multifidelity, and reduced-order modeling approximations. To demonstrate these methods, we focus on the design of devices that involve multi-physics interactions in advanced aerospace vehicles. A particular problem of interest is the shape design of nozzles for advanced vehicles such as the Northrop Grumman UCAS X-47B, involving coupled aero-structural-thermal simulations for nozzle performance. In this paper, we explore a combination of multilevel and multifidelity forward and inverse UQ algorithms to reduce the overall computational cost of the analysis by leveraging hierarchies of model form (i.e., multifidelity hierarchies) and solution discretization (i.e., multilevel hierarchies) in order of exploit trade offs between solution accuracy and cost. In particular, we seek the most cost effective fusion of information across complex multi-dimensional modeling hierarchies. Results to date indicate the utility of multiple approaches, including methods that optimally allocate resources when estimator variance varies smoothly across levels, methods that allocate sufficient sampling density based on sparsity estimates, and methods that employ greedy multilevel refinement.
conference on decision and control | 2016
John Irvin Alora; Alex A. Gorodetsky; Sertac Karaman; Youssef M. Marzouk; Nathan Lowry
Correct-by-design automated construction of control systems has attracted a tremendous amount of attention. However, most existing algorithms for automated construction suffer from the curse of dimensionality, i.e., their run time scales exponentially with increasing dimensionality of the state space. As a result, typically, systems with only a few degrees of freedom are considered. In this paper, we propose a novel algorithm based on the tensor-train decomposition that solves stochastic optimal control problems with syntactically co-safe linear temporal logic specifications. We show that, under certain conditions, the run time of the proposed algorithm scales polynomially with the dimensionality of the state space and the rank of the optimal cost-to-go function. We demonstrate the algorithm in a six-dimensional problem instance involving a simple airplane model. In this example, the proposed algorithm provides up to four orders of computational savings when compared to the standard value iteration algorithm.
arXiv: Numerical Analysis | 2015
Alex A. Gorodetsky; Sertac Karaman; Youssef M. Marzouk
international conference on robotics and automation | 2018
Thomas Sayre-McCord; Winter Guerra; Amado Antonini; Jasper Arneberg; Austin Brown; Guilherme Venturelli Cavalheiro; Yajun Fang; Alex A. Gorodetsky; Dave McCoy; Sebastian Quilter; Fabian Riether; Ezra Tal; Yunus Terzioglu; Luca Carlone; Sertac Karaman