Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alex A. Pollen is active.

Publication


Featured researches published by Alex A. Pollen.


Nature | 2012

The genomic basis of adaptive evolution in threespine sticklebacks

Felicity C. Jones; Manfred Grabherr; Yingguang Frank Chan; Pamela Russell; Evan Mauceli; Jeremy A. Johnson; Ross Swofford; Mono Pirun; Michael C. Zody; Simon D. M. White; Ewan Birney; Stephen M. J. Searle; Jeremy Schmutz; Jane Grimwood; Mark Dickson; Richard M. Myers; Craig T. Miller; Brian R. Summers; Anne K. Knecht; Shannon D. Brady; Haili Zhang; Alex A. Pollen; Timothy R. Howes; Chris T. Amemiya; Eric S. Lander; Federica Di Palma; Kerstin Lindblad-Toh; David M. Kingsley

Marine stickleback fish have colonized and adapted to thousands of streams and lakes formed since the last ice age, providing an exceptional opportunity to characterize genomic mechanisms underlying repeated ecological adaptation in nature. Here we develop a high-quality reference genome assembly for threespine sticklebacks. By sequencing the genomes of twenty additional individuals from a global set of marine and freshwater populations, we identify a genome-wide set of loci that are consistently associated with marine–freshwater divergence. Our results indicate that reuse of globally shared standing genetic variation, including chromosomal inversions, has an important role in repeated evolution of distinct marine and freshwater sticklebacks, and in the maintenance of divergent ecotypes during early stages of reproductive isolation. Both coding and regulatory changes occur in the set of loci underlying marine–freshwater evolution, but regulatory changes appear to predominate in this well known example of repeated adaptive evolution in nature.


Nature Biotechnology | 2014

Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex

Alex A. Pollen; Tomasz J. Nowakowski; Joe Shuga; Xiaohui Wang; Anne A. Leyrat; Jan Hsi Lui; Nianzhen Li; Lukasz Szpankowski; Brian Fowler; Peilin Chen; Naveen Ramalingam; Gang Sun; Myo Thu; Michael Norris; Ronald Lebofsky; Dominique Toppani; Darnell Kemp; Michael K. K. Wong; Barry Clerkson; Brittnee N. Jones; Shiquan Wu; Lawrence Knutsson; Beatriz Alvarado; Jing Wang; Lesley S. Weaver; Andrew May; Robert C. Jones; Marc Unger; Arnold R. Kriegstein; Jay A. West

Large-scale surveys of single-cell gene expression have the potential to reveal rare cell populations and lineage relationships but require efficient methods for cell capture and mRNA sequencing. Although cellular barcoding strategies allow parallel sequencing of single cells at ultra-low depths, the limitations of shallow sequencing have not been investigated directly. By capturing 301 single cells from 11 populations using microfluidics and analyzing single-cell transcriptomes across downsampled sequencing depths, we demonstrate that shallow single-cell mRNA sequencing (∼50,000 reads per cell) is sufficient for unbiased cell-type classification and biomarker identification. In the developing cortex, we identify diverse cell types, including multiple progenitor and neuronal subtypes, and we identify EGR1 and FOS as previously unreported candidate targets of Notch signaling in human but not mouse radial glia. Our strategy establishes an efficient method for unbiased analysis and comparison of cell populations from heterogeneous tissue by microfluidic single-cell capture and low-coverage sequencing of many cells.


Cell | 2007

Cis-regulatory changes in Kit ligand expression and parallel evolution of pigmentation in sticklebacks and humans

Craig T. Miller; Sandra Beleza; Alex A. Pollen; Dolph Schluter; Rick A. Kittles; Mark D. Shriver; David M. Kingsley

Dramatic pigmentation changes have evolved within most vertebrate groups, including fish and humans. Here we use genetic crosses in sticklebacks to investigate the parallel origin of pigmentation changes in natural populations. High-resolution mapping and expression experiments show that light gills and light ventrums map to a divergent regulatory allele of the Kit ligand (Kitlg) gene. The divergent allele reduces expression in gill and skin tissue and is shared by multiple derived freshwater populations with reduced pigmentation. In humans, Europeans and East Asians also share derived alleles at the KITLG locus. Strong signatures of selection map to regulatory regions surrounding the gene, and admixture mapping shows that the KITLG genomic region has a significant effect on human skin color. These experiments suggest that regulatory changes in Kitlg contribute to natural variation in vertebrate pigmentation, and that similar genetic mechanisms may underlie rapid evolutionary change in fish and humans.


Nature | 2011

Human-specific loss of regulatory DNA and the evolution of human-specific traits

Cory Y. McLean; Philip L. Reno; Alex A. Pollen; Abraham I. Bassan; Terence D. Capellini; Catherine Guenther; Vahan B. Indjeian; Xinhong Lim; Douglas B. Menke; Bruce T. Schaar; Aaron M. Wenger; Gill Bejerano; David M. Kingsley

Humans differ from other animals in many aspects of anatomy, physiology, and behaviour; however, the genotypic basis of most human-specific traits remains unknown. Recent whole-genome comparisons have made it possible to identify genes with elevated rates of amino acid change or divergent expression in humans, and non-coding sequences with accelerated base pair changes. Regulatory alterations may be particularly likely to produce phenotypic effects while preserving viability, and are known to underlie interesting evolutionary differences in other species. Here we identify molecular events particularly likely to produce significant regulatory changes in humans: complete deletion of sequences otherwise highly conserved between chimpanzees and other mammals. We confirm 510 such deletions in humans, which fall almost exclusively in non-coding regions and are enriched near genes involved in steroid hormone signalling and neural function. One deletion removes a sensory vibrissae and penile spine enhancer from the human androgen receptor (AR) gene, a molecular change correlated with anatomical loss of androgen-dependent sensory vibrissae and penile spines in the human lineage. Another deletion removes a forebrain subventricular zone enhancer near the tumour suppressor gene growth arrest and DNA-damage-inducible, gamma (GADD45G), a loss correlated with expansion of specific brain regions in humans. Deletions of tissue-specific enhancers may thus accompany both loss and gain traits in the human lineage, and provide specific examples of the kinds of regulatory alterations and inactivation events long proposed to have an important role in human evolutionary divergence.


Cell Stem Cell | 2016

Expression Analysis Highlights AXL as a Candidate Zika Virus Entry Receptor in Neural Stem Cells

Tomasz J. Nowakowski; Alex A. Pollen; Elizabeth Di Lullo; Carmen Sandoval-Espinosa; Marina Bershteyn; Arnold R. Kriegstein

The recent outbreak of Zika virus (ZIKV) in Brazil has been linked to substantial increases in fetal abnormalities and microcephaly. However, information about the underlying molecular and cellular mechanisms connecting viral infection to these defects remains limited. In this study we have examined the expression of receptors implicated in cell entry of several enveloped viruses including ZIKV across diverse cell types in the developing brain. Using single-cell RNA-seq and immunohistochemistry, we found that the candidate viral entry receptor AXL is highly expressed by human radial glial cells, astrocytes, endothelial cells, and microglia in developing human cortex and by progenitor cells in developing retina. We also show that AXL expression in radial glia is conserved in developing mouse and ferret cortex and in human stem cell-derived cerebral organoids, highlighting multiple experimental systems that could be applied to study mechanisms of ZIKV infectivity and effects on brain development.


Cell | 2015

Molecular identity of human outer radial glia during cortical development.

Alex A. Pollen; Tomasz J. Nowakowski; Jiadong Chen; Hanna Retallack; Carmen Sandoval-Espinosa; Cory R. Nicholas; Joe Shuga; Siyuan John Liu; Michael C. Oldham; Aaron Diaz; Daniel A. Lim; Anne A. Leyrat; Jay A. West; Arnold R. Kriegstein

Radial glia, the neural stem cells of the neocortex, are located in two niches: the ventricular zone and outer subventricular zone. Although outer subventricular zone radial glia may generate the majority of human cortical neurons, their molecular features remain elusive. By analyzing gene expression across single cells, we find that outer radial glia preferentially express genes related to extracellular matrix formation, migration, and stemness, including TNC, PTPRZ1, FAM107A, HOPX, and LIFR. Using dynamic imaging, immunostaining, and clonal analysis, we relate these molecular features to distinctive behaviors of outer radial glia, demonstrate the necessity of STAT3 signaling for their cell cycle progression, and establish their extensive proliferative potential. These results suggest that outer radial glia directly support the subventricular niche through local production of growth factors, potentiation of growth factor signals by extracellular matrix proteins, and activation of self-renewal pathways, thereby enabling the developmental and evolutionary expansion of the human neocortex.


Brain Behavior and Evolution | 2007

Environmental complexity and social organization sculpt the brain in Lake Tanganyikan cichlid fish.

Alex A. Pollen; Adam P. Dobberfuhl; Justin Scace; Mathias M. Igulu; Susan C. P. Renn; Caroly A. Shumway; Hans A. Hofmann

Complex brains and behaviors have occurred repeatedly within vertebrate classes throughout evolution. What adaptive pressures drive such changes? Both environmental and social features have been implicated in the expansion of select brain structures, particularly the telencephalon. East African cichlid fishes provide a superb opportunity to analyze the social and ecological correlates of neural phenotypes and their evolution. As a result of rapid, recent, and repeated radiations, there are hundreds of closely-related species available for study, with an astonishing diversity in habitat preferences and social behaviors. In this study, we present quantitative ecological, social, and neuroanatomical data for closely-related species from the (monophyletic) Ectodini clade of Lake Tanganyikan cichlid fish. The species differed either in habitat preference or social organization. After accounting for phylogeny with independent contrasts, we find that environmental and social factors differentially affect the brain, with environmental factors showing a broader effect on a range of brain structures compared to social factors. Five out of seven of the brain measures show a relationship with habitat measures. Brain size and cerebellar size are positively correlated with species number (which is correlated with habitat complexity); the medulla and olfactory bulb are negatively correlated with habitat measures. The telencephalon shows a trend toward a positive correlation with rock size. In contrast, only two brain structures, the telencephalon and hypothalamus, are correlated with social factors. Telencephalic size is larger in monogamous species compared to polygamous species, as well as with increased numbers of individuals; monogamy is also associated with smaller hypothalamic size. Our results suggest that selection or drift can act independently on different brain regions as the species diverge into different habitats and social systems.


Journal of Anatomy | 2007

Comparative aspects of cortical neurogenesis in vertebrates.

Amanda F.P. Cheung; Alex A. Pollen; Jamin DeProto; Zoltán Molnár

The mammalian neocortex consists of six layers. By contrast, the reptilian and avian cortices have only three, which are believed to be equivalent to layers I, V and VI of mammals. In mammals, the majority of cortical cell proliferation occurs in the ventricular and subventricular zones, but there are a small number of scattered individual divisions throughout the cortex. Neurogenesis in the cortical subventricular zone is believed to contribute to the supragranular layers. To estimate the proportions of different forms of divisions in reptiles and birds, we examined the site of proliferation in embryonic turtle (stages 18–25) and chick (embryonic days 8–15) brains using phospho‐histone H3 (a G2 and M phase marker) immunohistochemistry. In turtle, only few scattered abventricular H3‐immunoreactive cells were found outside the ventricular zone; the majority of the H3‐immunoreactive cells were located in the ventricular zone throughout the entire turtle brain. Ventricular zone cell proliferation peaks at stages 18 and 20, before an increase of abventricular proliferation at stages 23 and 25. In turtle cortex, however, abventricular proliferation at any given stage never exceeded 17.5 ± 2.47% of the total division and the mitotic profiles did not align parallel to the ventricular zone. Phospho‐histone H3 immunoreactivity in embryonic chick brains suggests the lack of subventricular zone in the dorsal cortex, but the presence of subventricular zone in the ventral telencephalon. We were able to demonstrate that the avian subventricular zone is present in both pallial and subpallial regions of the ventral telencephalon during embryonic development, and we characterize the spatial and temporal organization of the subventricular zone. Comparative studies suggest that the subventricular zone was involved in the laminar expansion of the cortex to six layers in mammals from the three‐layered cortex found in reptiles and birds. Within mammals, the number of neurons in a cortical column appears to be largely constant; nevertheless, there are considerable differences between the germinal zones in mammalian species. It is yet to be determined whether these elaborations of the subventricular zone may have contributed to cell diversity, tangential expansion or gyrus formation of the neocortex and whether it might have been the major driving force behind the evolution of the six‐layered neocortex in mammals.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Zika virus cell tropism in the developing human brain and inhibition by azithromycin

Hanna Retallack; Elizabeth Di Lullo; Carolina Arias; Kristeene A. Knopp; Matthew T. Laurie; Carmen Sandoval-Espinosa; Walter R. Mancia Leon; Robert Krencik; Erik M. Ullian; Julien Spatazza; Alex A. Pollen; Caleigh Mandel-Brehm; Tomasz J. Nowakowski; Arnold R. Kriegstein; Joseph L. DeRisi

Significance Zika virus (ZIKV) is a mosquito-borne flavivirus that has rapidly spread through the Americas and has been associated with fetal abnormalities, including microcephaly. To understand how microcephaly develops, it is important to identify which cell types of the developing brain are susceptible to infection. We use primary human tissue to show that radial glia and astrocytes are more susceptible to infection than neurons, a pattern that correlates with expression of a putative viral entry receptor, AXL. We also perform a screen of Food and Drug Administration-approved compounds, with an emphasis on drugs known to be safe in pregnancy. We identify an antibiotic, azithromycin, that reduces viral proliferation in glial cells, and compare its activity with daptomycin and sofosbuvir, two additional drugs with anti-ZIKV activity. The rapid spread of Zika virus (ZIKV) and its association with abnormal brain development constitute a global health emergency. Congenital ZIKV infection produces a range of mild to severe pathologies, including microcephaly. To understand the pathophysiology of ZIKV infection, we used models of the developing brain that faithfully recapitulate the tissue architecture in early to midgestation. We identify the brain cell populations that are most susceptible to ZIKV infection in primary human tissue, provide evidence for a mechanism of viral entry, and show that a commonly used antibiotic protects cultured brain cells by reducing viral proliferation. In the brain, ZIKV preferentially infected neural stem cells, astrocytes, oligodendrocyte precursor cells, and microglia, whereas neurons were less susceptible to infection. These findings suggest mechanisms for microcephaly and other pathologic features of infants with congenital ZIKV infection that are not explained by neural stem cell infection alone, such as calcifications in the cortical plate. Furthermore, we find that blocking the glia-enriched putative viral entry receptor AXL reduced ZIKV infection of astrocytes in vitro, and genetic knockdown of AXL in a glial cell line nearly abolished infection. Finally, we evaluate 2,177 compounds, focusing on drugs safe in pregnancy. We show that the macrolide antibiotic azithromycin reduced viral proliferation and virus-induced cytopathic effects in glial cell lines and human astrocytes. Our characterization of infection in the developing human brain clarifies the pathogenesis of congenital ZIKV infection and provides the basis for investigating possible therapeutic strategies to safely alleviate or prevent the most severe consequences of the epidemic.


Genome Biology | 2016

Single-cell analysis of long non-coding RNAs in the developing human neocortex.

Siyuan John Liu; Tomasz J. Nowakowski; Alex A. Pollen; Jan H. Lui; Max A. Horlbeck; Frank J. Attenello; Daniel He; Jonathan S. Weissman; Arnold R. Kriegstein; Aaron Diaz; Daniel A. Lim

BackgroundLong non-coding RNAs (lncRNAs) comprise a diverse class of transcripts that can regulate molecular and cellular processes in brain development and disease. LncRNAs exhibit cell type- and tissue-specific expression, but little is known about the expression and function of lncRNAs in the developing human brain. Furthermore, it has been unclear whether lncRNAs are highly expressed in subsets of cells within tissues, despite appearing lowly expressed in bulk populations.ResultsWe use strand-specific RNA-seq to deeply profile lncRNAs from polyadenylated and total RNA obtained from human neocortex at different stages of development, and we apply this reference to analyze the transcriptomes of single cells. While lncRNAs are generally detected at low levels in bulk tissues, single-cell transcriptomics of hundreds of neocortex cells reveal that many lncRNAs are abundantly expressed in individual cells and are cell type-specific. Notably, LOC646329 is a lncRNA enriched in single radial glia cells but is detected at low abundance in tissues. CRISPRi knockdown of LOC646329 indicates that this lncRNA regulates cell proliferation.ConclusionThe discrete and abundant expression of lncRNAs among individual cells has important implications for both their biological function and utility for distinguishing neural cell types.

Collaboration


Dive into the Alex A. Pollen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aaron Diaz

University of California

View shared research outputs
Top Co-Authors

Avatar

Aparna Bhaduri

University of California

View shared research outputs
Top Co-Authors

Avatar

Daniel A. Lim

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge