Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel A. Lim is active.

Publication


Featured researches published by Daniel A. Lim.


Cell | 1999

Subventricular Zone Astrocytes Are Neural Stem Cells in the Adult Mammalian Brain

Fiona Doetsch; Isabelle Caillé; Daniel A. Lim; Jose Manuel Garcia-Verdugo; Arturo Alvarez-Buylla

Neural stem cells reside in the subventricular zone (SVZ) of the adult mammalian brain. This germinal region, which continually generates new neurons destined for the olfactory bulb, is composed of four cell types: migrating neuroblasts, immature precursors, astrocytes, and ependymal cells. Here we show that SVZ astrocytes, and not ependymal cells, remain labeled with proliferation markers after long survivals in adult mice. After elimination of immature precursors and neuroblasts by an antimitotic treatment, SVZ astrocytes divide to generate immature precursors and neuroblasts. Furthermore, in untreated mice, SVZ astrocytes specifically infected with a retrovirus give rise to new neurons in the olfactory bulb. Finally, we show that SVZ astrocytes give rise to cells that grow into multipotent neurospheres in vitro. We conclude that SVZ astrocytes act as neural stem cells in both the normal and regenerating brain.


Neuron | 2000

Noggin Antagonizes BMP Signaling to Create a Niche for Adult Neurogenesis

Daniel A. Lim; Anthony D. Tramontin; Jose Trevejo; Daniel G. Herrera; Jose Manuel Garcia-Verdugo; Arturo Alvarez-Buylla

Large numbers of new neurons are born continuously in the adult subventricular zone (SVZ). The molecular niche of SVZ stem cells is poorly understood. Here, we show that the bone morphogenetic protein (BMP) antagonist Noggin is expressed by ependymal cells adjacent to the SVZ. SVZ cells were found to express BMPs as well as their cognate receptors. BMPs potently inhibited neurogenesis both in vitro and in vivo. BMP signaling cell-autonomously blocked the production of neurons by SVZ precursors by directing glial differentiation. Purified mouse Noggin protein promoted neurogenesis in vitro and inhibited glial cell differentiation. Ectopic Noggin promoted neuronal differentiation of SVZ cells grafted to the striatum. We thus propose that ependymal Noggin production creates a neurogenic environment in the adjacent SVZ by blocking endogenous BMP signaling.


Development | 2005

Sonic hedgehog controls stem cell behavior in the postnatal and adult brain

Verónica Palma; Daniel A. Lim; Nadia Dahmane; Pilar Sánchez; Thomas C. Brionne; Claudia D. Herzberg; Yorick Gitton; Alan Carleton; Arturo Alvarez-Buylla; Ariel Ruiz i Altaba

Sonic hedgehog (Shh) signaling controls many aspects of ontogeny, orchestrating congruent growth and patterning. During brain development, Shh regulates early ventral patterning while later on it is critical for the regulation of precursor proliferation in the dorsal brain, namely in the neocortex, tectum and cerebellum. We have recently shown that Shh also controls the behavior of cells with stem cell properties in the mouse embryonic neocortex, and additional studies have implicated it in the control of cell proliferation in the adult ventral forebrain and in the hippocampus. However, it remains unclear whether it regulates adult stem cell lineages in an equivalent manner. Similarly, it is not known which cells respond to Shh signaling in stem cell niches. Here we demonstrate that Shh is required for cell proliferation in the mouse forebrains subventricular zone (SVZ) stem cell niche and for the production of new olfactory interneurons in vivo. We identify two populations of Gli1+ Shh signaling responding cells: GFAP+ SVZ stem cells and GFAP- precursors. Consistently, we show that Shh regulates the self-renewal of neurosphere-forming stem cells and that it modulates proliferation of SVZ lineages by acting as a mitogen in cooperation with epidermal growth factor (EGF). Together, our data demonstrate a critical and conserved role of Shh signaling in the regulation of stem cell lineages in the adult mammalian brain, highlight the subventricular stem cell astrocytes and their more abundant derived precursors as in vivo targets of Shh signaling, and demonstrate the requirement for Shh signaling in postnatal and adult neurogenesis.


Journal of Neurobiology | 1998

Architecture and cell types of the adult subventricular zone: In search of the stem cells

Jose Manuel Garcia-Verdugo; Fiona Doetsch; Hynek Wichterle; Daniel A. Lim; Arturo Alvarez-Buylla

Neural stem cells are maintained in the subventricular zone (SVZ) of the adult mammalian brain. Here, we review the cellular organization of this germinal layer and propose lineage relationships of the three main cell types found in this area. The majority of cells in the adult SVZ are migrating neuroblasts (type A cells) that continue to proliferate. These cells form an extensive network of tangentially oriented pathways throughout the lateral wall of the lateral ventricle. Type A cells move long distances through this network at high speeds by means of chain migration. Cells in the SVZ network enter the rostral migratory stream (RMS) and migrate anteriorly into the olfactory bulb, where they differentiate into interneurons. The chains of type A cells are ensheathed by slowly proliferating astrocytes (type B cells), the second most common cell type in this germinal layer. The most actively proliferating cells in the SVZ, type C, form small clusters dispersed throughout the network. These foci of proliferating type C cells are in close proximity to chains of type A cells. We discuss possible lineage relationships among these cells and hypothesize which are the neural stem cells in the adult SVZ. In addition, we suggest that interactions between type A, B, and C cells may regulate proliferation and initial differentiation within this germinal layer.


Nature | 2009

Chromatin remodelling factor Mll1 is essential for neurogenesis from postnatal neural stem cells

Daniel A. Lim; Yin-Cheng Huang; Tomek Swigut; Anika L. Mirick; José Manuel García-Verdugo; Joanna Wysocka; Patricia Ernst; Arturo Alvarez-Buylla

Epigenetic mechanisms that maintain neurogenesis throughout adult life remain poorly understood. Trithorax group (trxG) and Polycomb group (PcG) gene products are part of an evolutionarily conserved chromatin remodelling system that activate or silence gene expression, respectively. Although PcG member Bmi1 has been shown to be required for postnatal neural stem cell self-renewal, the role of trxG genes remains unknown. Here we show that the trxG member Mll1 (mixed-lineage leukaemia 1) is required for neurogenesis in the mouse postnatal brain. Mll1-deficient subventricular zone neural stem cells survive, proliferate and efficiently differentiate into glial lineages; however, neuronal differentiation is severely impaired. In Mll1-deficient cells, early proneural Mash1 (also known as Ascl1) and gliogenic Olig2 expression are preserved, but Dlx2, a key downstream regulator of subventricular zone neurogenesis, is not expressed. Overexpression of Dlx2 can rescue neurogenesis in Mll1-deficient cells. Chromatin immunoprecipitation demonstrates that Dlx2 is a direct target of MLL in subventricular zone cells. In differentiating wild-type subventricular zone cells, Mash1, Olig2 and Dlx2 loci have high levels of histone 3 trimethylated at lysine 4 (H3K4me3), consistent with their transcription. In contrast, in Mll1-deficient subventricular zone cells, chromatin at Dlx2 is bivalently marked by both H3K4me3 and histone 3 trimethylated at lysine 27 (H3K27me3), and the Dlx2 gene fails to properly activate. These data support a model in which Mll1 is required to resolve key silenced bivalent loci in postnatal neural precursors to the actively transcribed state for the induction of neurogenesis, but not for gliogenesis.


Neuro-oncology | 2007

Relationship of glioblastoma multiforme to neural stem cell regions predicts invasive and multifocal tumor phenotype

Daniel A. Lim; Soonmee Cha; Mary Catherine Mayo; Mei-Hsiu Chen; Evren Keles; Scott R. VandenBerg; Mitchel S. Berger

Neural stem cells with astrocyte-like characteristics exist in the human brain subventricular zone (SVZ), and these cells may give rise to glioblastoma multiforme (GBM). We therefore analyzed MRI features of GBMs in specific relation to the SVZ. We reviewed the preoperative and serial postoperative MR images of 53 patients with newly diagnosed GBM. The spatial relationship of the contrast-enhancing lesion (CEL) with the SVZ and cortex was determined preoperatively. Classification was as follows: group I, CEL contacting SVZ and infiltrating cortex; group II, CEL contacting SVZ but not involving cortex; group III, CEL not contacting SVZ but involving cortex; and group IV, CEL neither contacting SVZ nor infiltrating cortex. Patients with group I GBMs (n = 16) were most likely to have multifocal disease at diagnosis (9 patients, 56%, p = 0.001). In contrast, group IV GBMs (n = 14) were never multifocal. Group II (n = 14) and group III (n = 9) GBMs were multifocal in 11% and 29% of cases, respectively. Group I GBMs always had tumor recurrences noncontiguous with the initial lesion(s), while group IV GBM recurrences were always bordering the primary lesion. Group I GBMs may be most related to SVZ stem cells; these tumors were in intimate contact with the SVZ, were most likely to be multifocal at diagnosis, and recurred at great distances to the initial lesion(s). In contrast, group IV GBMs were always solitary lesions; these may arise from non-SVZ, white matter glial progenitors. Our MRI-based classification of GBMs may further our understanding of GBM histogenesis and help predict tumor recurrence pattern.


Science Translational Medicine | 2012

Neural Stem Cell Engraftment and Myelination in the Human Brain

Nalin Gupta; Roland G. Henry; Jonathan B. Strober; Sang-Mo Kang; Daniel A. Lim; Monica Bucci; Eduardo Caverzasi; Gaetano L; Maria Luisa Mandelli; Ryan T; Perry R; Jody A. Farrell; Jeremy Rj; Ulman M; Huhn Sl; A. J. Barkovich; David H. Rowitch

Neural stem cell transplantation study suggests myelin formation in children with a severe hypomyelination disorder. Bringing Insulation Up to Code Faulty insulation around household wiring is an electric shock and fire hazard; likewise, defects in the insulation around nerve fibers—the myelin sheath—can have destructive effects. Because of myelin’s crucial roles in promoting the rapid transmission of nerve impulses and in axon integrity, mutations that affect myelin formation in the central nervous system cause severe neurological decline. Uchida et al. and Gupta et al. now investigate the use of neural stem cells—which can differentiate into myelin-producing oligodendrocytes—as a potential treatment for such disorders. Previous work showed that transplantation of human oligodendrocyte progenitors into newborn shiverer (Shi) mice, a hypomyelination model, could prolong survival. In the new work, Uchida et al. transplanted human neural stem cells, which had been expanded and banked, into the brains of newborn and juvenile Shi mice. Whereas the newborn mice were asymptomatic, the juvenile mice were already symptomatic and displayed advanced dysmyelination. These transplanted cells preferentially differentiated into oligodendrocytes that generated myelin, which ensheathed axons and improved nerve conduction in both categories of mice. In an open-label phase 1 study, Gupta et al. then tested the safety and efficacy of such cells in four young boys with a severe, fatal form of Pelizaeus-Merzbacher disease (PMD), a rare X-linked condition in which oligodendrocytes cannot myelinate axons. Human neural stem cells were transplanted directly into the brain; the procedure and transplantation were well tolerated. Magnetic resonance imaging techniques, performed before transplant and five times in the following year, were used to assess myelination. The imaging results were consistent with donor cell–derived myelination in the transplantation region in three of the four patients. These results support further study of potential clinical benefits of neural stem cell transplantation in PMD and other dysmyelination disorders. Pelizaeus-Merzbacher disease (PMD) is a rare leukodystrophy caused by mutation of the proteolipid protein 1 gene. Defective oligodendrocytes in PMD fail to myelinate axons, causing global neurological dysfunction. Human central nervous system stem cells (HuCNS-SCs) can develop into oligodendrocytes and confer structurally normal myelin when transplanted into a hypomyelinating mouse model. A 1-year, open-label phase-1 study was undertaken to evaluate safety and to detect evidence of myelin formation after HuCNS-SC transplantation. Allogeneic HuCNS-SCs were surgically implanted into the frontal lobe white matter in four male subjects with an early-onset severe form of PMD. Immunosuppression was administered for 9 months. Serial neurological evaluations, developmental assessments, and cranial magnetic resonance imaging (MRI) and MR spectroscopy, including high-angular resolution diffusion tensor imaging (DTI), were performed at baseline and after transplantation. The neurosurgical procedure, immunosuppression regimen, and HuCNS-SC transplantation were well tolerated. Modest gains in neurological function were observed in three of the four subjects. No clinical or radiological adverse effects were directly attributed to the donor cells. Reduced T1 and T2 relaxation times were observed in the regions of transplantation 9 months after the procedure in the three subjects. Normalized DTI showed increasing fractional anisotropy and reduced radial diffusivity, consistent with myelination, in the region of transplantation compared to control white matter regions remote to the transplant sites. These phase 1 findings indicate a favorable safety profile for HuCNS-SCs in subjects with PMD. The MRI results suggest durable cell engraftment and donor-derived myelin in the transplanted host white matter.


Cell | 2015

Molecular identity of human outer radial glia during cortical development.

Alex A. Pollen; Tomasz J. Nowakowski; Jiadong Chen; Hanna Retallack; Carmen Sandoval-Espinosa; Cory R. Nicholas; Joe Shuga; Siyuan John Liu; Michael C. Oldham; Aaron Diaz; Daniel A. Lim; Anne A. Leyrat; Jay A. West; Arnold R. Kriegstein

Radial glia, the neural stem cells of the neocortex, are located in two niches: the ventricular zone and outer subventricular zone. Although outer subventricular zone radial glia may generate the majority of human cortical neurons, their molecular features remain elusive. By analyzing gene expression across single cells, we find that outer radial glia preferentially express genes related to extracellular matrix formation, migration, and stemness, including TNC, PTPRZ1, FAM107A, HOPX, and LIFR. Using dynamic imaging, immunostaining, and clonal analysis, we relate these molecular features to distinctive behaviors of outer radial glia, demonstrate the necessity of STAT3 signaling for their cell cycle progression, and establish their extensive proliferative potential. These results suggest that outer radial glia directly support the subventricular niche through local production of growth factors, potentiation of growth factor signals by extracellular matrix proteins, and activation of self-renewal pathways, thereby enabling the developmental and evolutionary expansion of the human neocortex.


Science | 2017

CRISPRi-based genome-scale identification of functional long noncoding RNA loci in human cells

S. John Liu; Max A. Horlbeck; Seung Woo Cho; Harjus Birk; Martina Malatesta; Daniel He; Frank J. Attenello; Jacqueline E. Villalta; Min Y. Cho; Yuwen Chen; Mohammad A. Mandegar; Michael P. Olvera; Luke A. Gilbert; Bruce R. Conklin; Howard Y. Chang; Jonathan S. Weissman; Daniel A. Lim

A very focused function for lncRNAs The human genome generates many thousands of long noncoding RNAs (lncRNAs). A very small number of lncRNAs have been shown to be functional. Liu et al. carried out a large-scale CRISPR-based screen to assess the function of ∼17,000 lncRNAs in seven different human cell lines. A considerable number (∼500) of the tested lncRNAs influenced cell growth, suggesting biological function. In almost all cases, though, the function was highly cell type—specific, often limited to just one cell type. Science, this issue p. 10.1126/science.aah7111 A considerable fraction of long noncoding RNAs have highly cell type–specific biological functions. INTRODUCTION The human genome contains tens of thousands of loci that produce long noncoding RNAs (lncRNAs), transcripts that have no apparent protein-coding potential. A subset of lncRNAs have been found to play critical roles in cellular processes, organismal development, and disease. Although these examples are suggestive of the importance and diversity of lncRNAs, the vast majority of lncRNA genes have not been functionally tested. RATIONALE Because it is currently not possible to predict which lncRNA loci are functional or what function they perform, there is a need for large-scale, systematic approaches to interrogating the functional contribution of lncRNA loci. We therefore developed a genome-scale screening platform based on CRISPR-mediated interference (CRISPRi), which uses a catalytically inactive CRISPR effector protein, (d)Cas9, fused to a repressive KRAB domain and targeted by a single guide RNA (sgRNA), to inhibit gene expression. By catalyzing repressive chromatin modifications around the transcription start site (TSS) and serving as a transcriptional roadblock, CRISPRi tests a broad range of lncRNA gene functions, including the production of cis- and trans-acting RNA transcripts, cis-mediated regulation related to lncRNA transcription itself, and enhancer-like function of some lncRNA loci. RESULTS We designed a CRISPRi Non-Coding Library (CRiNCL), which targets 16,401 lncRNA genes each with 10 sgRNAs per TSS, and applied this pooled screening approach to identify lncRNA genes that modify robust cell growth. We screened seven human cell lines, including six transformed cell lines and induced pluripotent stem cells (iPSCs), and identified 499 lncRNA loci that modified cell growth upon CRISPRi targeting; 372 and 299 of these loci were distal from any protein coding gene or mapped enhancer, respectively. Extensive validation confirmed the screen results and demonstrated the robust and specific performance of CRISPRi for repressing lncRNA transcription. Remarkably, 89% of the lncRNA gene hits modified growth in just one of the cell lines tested, and no hits were common to all seven cell lines. Although nearly all of the hit genes were expressed in the cell line in which they exhibited a growth phenotype, expression alone was insufficient to explain the cell type specificity of their function. Transcriptional profiling revealed extensive gene expression changes upon CRISPRi targeting of lncRNA loci in the cells in which they modified growth, whereas targeting the same lncRNA locus in other cell lines resulted in minimal changes to the transcriptome beyond depletion of the targeted lncRNA transcript itself. CONCLUSION Our study considerably increases the number of known functional lncRNA loci. More broadly, our CRISPRi approach enables mechanistic studies of specific lncRNA functions and, when applied systematically, supports the global exploration of the complex biology contained in the lncRNA-expressing genome. Finally, in contrast to recent studies that found that essential protein-coding genes typically are required across a broad range of cell types, we show that lncRNA function is highly cell type–specific, a finding that has important implications for their involvement in both normal biology and disease. CRISPRi screening of lncRNAs in human cells. CRISPRi can precisely repress transcription of lncRNAs. The CRISPRi Non-Coding Library (CRiNCL) was generated to interrogate the function of thousands of long noncoding RNAs in seven different cell lines. Validation studies confirmed the exquisite cell type–specific function of lncRNAs. The human genome produces thousands of long noncoding RNAs (lncRNAs)—transcripts >200 nucleotides long that do not encode proteins. Although critical roles in normal biology and disease have been revealed for a subset of lncRNAs, the function of the vast majority remains untested. We developed a CRISPR interference (CRISPRi) platform targeting 16,401 lncRNA loci in seven diverse cell lines, including six transformed cell lines and human induced pluripotent stem cells (iPSCs). Large-scale screening identified 499 lncRNA loci required for robust cellular growth, of which 89% showed growth-modifying function exclusively in one cell type. We further found that lncRNA knockdown can perturb complex transcriptional networks in a cell type–specific manner. These data underscore the functional importance and cell type specificity of many lncRNAs.


Cell Stem Cell | 2015

The long noncoding RNA Pnky regulates neuronal differentiation of embryonic and postnatal neural stem cells.

Alexander D. Ramos; Rebecca E. Andersen; Siyuan John Liu; Tomasz J. Nowakowski; Sung Jun Hong; Caitlyn C. Gertz; Ryan D. Salinas; Hosniya Zarabi; Arnold R. Kriegstein; Daniel A. Lim

While thousands of long noncoding RNAs (lncRNAs) have been identified, few lncRNAs that control neural stem cell (NSC) behavior are known. Here, we identify Pinky (Pnky) as a neural-specific lncRNA that regulates neurogenesis from NSCs in the embryonic and postnatal brain. In postnatal NSCs, Pnky knockdown potentiates neuronal lineage commitment and expands the transit-amplifying cell population, increasing neuron production several-fold. Pnky is evolutionarily conserved and expressed in NSCs of the developing human brain. In the embryonic mouse cortex, Pnky knockdown increases neuronal differentiation and depletes the NSC population. Pnky interacts with the splicing regulator PTBP1, and PTBP1 knockdown also enhances neurogenesis. In NSCs, Pnky and PTBP1 regulate the expression and alternative splicing of a core set of transcripts that relates to the cellular phenotype. These data thus unveil Pnky as a conserved lncRNA that interacts with a key RNA processing factor and regulates neurogenesis from embryonic and postnatal NSC populations.

Collaboration


Dive into the Daniel A. Lim's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aaron Diaz

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alex A. Pollen

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge