Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alex Alvarado is active.

Publication


Featured researches published by Alex Alvarado.


Scientific Reports | 2015

Spectrally Shaped DP-16QAM Super-Channel Transmission with Multi-Channel Digital Back-Propagation

Robert Maher; Tianhua Xu; Lidia Galdino; Masaki Sato; Alex Alvarado; Kai Shi; Seb J. Savory; Benn C. Thomsen; Robert I. Killey; Polina Bayvel

The achievable transmission capacity of conventional optical fibre communication systems is limited by nonlinear distortions due to the Kerr effect and the difficulty in modulating the optical field to effectively use the available fibre bandwidth. In order to achieve a high information spectral density (ISD), while simultaneously maintaining transmission reach, multi-channel fibre nonlinearity compensation and spectrally efficient data encoding must be utilised. In this work, we use a single coherent super-receiver to simultaneously receive a DP-16QAM super-channel, consisting of seven spectrally shaped 10GBd sub-carriers spaced at the Nyquist frequency. Effective nonlinearity mitigation is achieved using multi-channel digital back-propagation (MC-DBP) and this technique is combined with an optimised forward error correction implementation to demonstrate a record gain in transmission reach of 85%; increasing the maximum transmission distance from 3190 km to 5890 km, with an ISD of 6.60 b/s/Hz. In addition, this report outlines for the first time, the sensitivity of MC-DBP gain to linear transmission line impairments and defines a trade-off between performance and complexity.


IEEE Transactions on Communications | 2009

Distribution of L-values in gray-mapped M 2 -QAM: closed-form approximations and applications

Alex Alvarado; Leszek Szczecinski; Rodolfo Feick; Luciano Ahumada

In this paper we develop closed form approximations for the probability density function (PDF) of the reliability metrics (L-values) in bit-interleaved coded modulation (BICM). The expressions are valid for M2-ary quadrature amplitude modulations (M2-QAM) with binary reflected Gray mapping when the metrics are calculated using the so-called max-log approximation. Based on the developed expressions, we also propose two simple Gaussian mixture approximations that are analytically tractable. We apply our developments to efficiently calculate the BICM capacity, and to develop bounds on the coded bit-error rate when a convolutional code is used. The coded performance of a hybrid automatic repeat request (HARQ) based on constellation rearrangement is also evaluated.


Optics Express | 2014

On the performance of multichannel digital backpropagation in high-capacity long-haul optical transmission

Gabriele Liga; Tianhua Xu; Alex Alvarado; Robert I. Killey; Polina Bayvel

The performance of digital backpropagation (DBP) equalization when applied over multiple channels to compensate for the nonlinear impairments in optical fiber transmission systems is investigated. The impact of a suboptimal multichannel DBP operation is evaluated, where implementation complexity is reduced by varying parameters such as the number of nonlinear steps per span and sampling rate. Results have been obtained for a reference system consisting of a 5×32 Gbaud PDM-16QAM superchannel with 33 GHz subchannel spacing and Nyquist pulse shaping under long-haul transmission. The reduction in the effectiveness of the algorithm is evaluated and compared with the ideal gain expected from the cancellation of the nonlinear signal distortion. The detrimental effects of polarization mode dispersion (PMD) with varying DBP bandwidth are also studied. Key parameters which ensure the effectiveness of multichannel DBP are identified.


Journal of Lightwave Technology | 2015

Replacing the Soft-Decision FEC Limit Paradigm in the Design of Optical Communication Systems

Alex Alvarado; Erik Agrell; Domanic Lavery; Robert Maher; Polina Bayvel

The FEC limit paradigm is the prevalent practice for designing optical communication systems to attain a certain bit error rate (BER) without forward error correction (FEC). This practice assumes that there is an FEC code that will reduce the BER after decoding to the desired level. In this paper, we challenge this practice and show that the concept of a channel-independent FEC limit is invalid for soft-decision bit-wise decoding. It is shown that for low code rates and high-order modulation formats, the use of the soft-decision FEC limit paradigm can underestimate the spectral efficiencies by up to 20%. A better predictor for the BER after decoding is the generalized mutual information, which is shown to give consistent post-FEC BER predictions across different channel conditions and modulation formats. Extensive optical full-field simulations and experiments are carried out in both the linear and nonlinear transmission regimes to confirm the theoretical analysis.


Journal of Lightwave Technology | 2014

Capacity of a nonlinear optical channel with finite memory

Erik Agrell; Alex Alvarado; Giuseppe Durisi; Magnus Karlsson

The channel capacity of a nonlinear, dispersive fiber-optic link is revisited. To this end, the popular Gaussian noise (GN) model is extended with a parameter to account for the finite memory of realistic fiber channels. This finite-memory model is harder to analyze mathematically but, in contrast to previous models, it is valid also for nonstationary or heavy-tailed input signals. For uncoded transmission and standard modulation formats, the new model gives the same results as the regular GN model when the memory of the channel is about ten symbols or more. These results confirm previous results that the GN model is accurate for uncoded transmission. However, when coding is considered, the results obtained using the finite-memory model are very different from those obtained by previous models, even when the channel memory is large. In particular, the peaky behavior of the channel capacity, which has been reported for numerous nonlinear channel models, appears to be an artifact of applying models derived for independent input in a coded (i.e., dependent) scenario.


Optics Express | 2015

On achievable rates for long-haul fiber-optic communications.

Tobias Fehenberger; Alex Alvarado; Polina Bayvel; Norbert Hanik

Lower bounds on mutual information (MI) of long-haul optical fiber systems for hard-decision and soft-decision decoding are studied. Ready-to-use expressions to calculate the MI are presented. Extensive numerical simulations are used to quantify how changes in the optical transmitter, receiver, and channel affect the achievable transmission rates of the system. Special emphasis is put to the use of different quadrature amplitude modulation formats, channel spacings, digital back-propagation schemes and probabilistic shaping. The advantages of using MI over the prevailing Q-factor as a figure of merit of coded optical systems are also highlighted.


Journal of Lightwave Technology | 2015

Four-Dimensional Coded Modulation with Bit-Wise Decoders for Future Optical Communications

Alex Alvarado; Erik Agrell

Coded modulation (CM) is the combination of forward error correction (FEC) and multilevel constellations. Coherent optical communication systems result in a four-dimensional (4D) signal space, which naturally leads to 4D-CM transceivers. A practically attractive design paradigm is to use a bit-wise decoder, where the detection process is (suboptimally) separated into two steps: soft-decision demapping followed by binary decoding. In this paper, bit-wise decoders are studied from an information-theoretic viewpoint. 4D constellations with up to 4096 constellation points are considered. Metrics to predict the post-FEC bit-error rate (BER) of bit-wise decoders are analyzed. The mutual information is shown to fail at predicting the post-FEC BER of bit-wise decoders and the so-called generalized mutual information is shown to be a much more robust metric. For the suboptimal scheme under consideration, it is also shown that constellations that transmit and receive information in each polarization and quadrature independently (e.g., PM-QPSK, PM-16QAM, and PM-64QAM) outperform the best 4D constellations designed for uncoded transmission. Theoretical gains are as high as 4 dB, which are then validated via numerical simulations of low-density parity check codes.


IEEE Transactions on Information Theory | 2011

Optimal Alphabets and Binary Labelings for BICM at Low SNR

Erik Agrell; Alex Alvarado

Optimal binary labelings, input distributions, and input alphabets are analyzed for the so-called bit-interleaved coded modulation (BICM) capacity, paying special attention to the low signal-to-noise ratio (SNR) regime. For 8-ary pulse amplitude modulation (PAM) and for 0.75 bit/symbol, the folded binary code results in a higher capacity than the binary reflected Gray code (BRGC) and the natural binary code (NBC). The 1 dB gap between the additive white Gaussian noise (AWGN) capacity and the BICM capacity with the BRGC can be almost completely removed if the input symbol distribution is properly selected. First-order asymptotics of the BICM capacity for arbitrary input alphabets and distributions, dimensions, mean, variance, and binary labeling are developed. These asymptotics are used to define first-order optimal (FOO) constellations for BICM, i.e., constellations that make BICM achieve the Shannon limit -1.59 dB. It is shown that the Eb/N0 required for reliable transmission at asymptotically low rates in BICM can be as high as infinity, that for uniform input distributions and 8-PAM there are only 72 classes of binary labelings with a different first-order asymptotic behavior, and that this number is reduced to only 26 for 8-ary phase shift keying (PSK). A general answer to the question of FOO constellations for BICM is also given: using the Hadamard transform, it is found that for uniform input distributions, a constellation for BICM is FOO if and only if it is a linear projection of a hypercube. A constellation based on PAM or quadrature amplitude modulation input alphabets is FOO if and only if they are labeled by the NBC; if the constellation is based on PSK input alphabets instead, it can never be FOO if the input alphabet has more than four points, regardless of the labeling.


Philosophical Transactions of the Royal Society A | 2016

Maximizing the optical network capacity

Polina Bayvel; Robert Maher; Tianhua Xu; Gabriele Liga; Nikita A. Shevchenko; Domanic Lavery; Alex Alvarado; Robert I. Killey

Most of the digital data transmitted are carried by optical fibres, forming the great part of the national and international communication infrastructure. The information-carrying capacity of these networks has increased vastly over the past decades through the introduction of wavelength division multiplexing, advanced modulation formats, digital signal processing and improved optical fibre and amplifier technology. These developments sparked the communication revolution and the growth of the Internet, and have created an illusion of infinite capacity being available. But as the volume of data continues to increase, is there a limit to the capacity of an optical fibre communication channel? The optical fibre channel is nonlinear, and the intensity-dependent Kerr nonlinearity limit has been suggested as a fundamental limit to optical fibre capacity. Current research is focused on whether this is the case, and on linear and nonlinear techniques, both optical and electronic, to understand, unlock and maximize the capacity of optical communications in the nonlinear regime. This paper describes some of them and discusses future prospects for success in the quest for capacity.


IEEE Transactions on Communications | 2013

Design of APSK Constellations for Coherent Optical Channels with Nonlinear Phase Noise

Christian Häger; Alexandre Graell i Amat; Alex Alvarado; Erik Agrell

We study the design of amplitude phase-shift keying (APSK) constellations for a coherent fiber-optical communication system where nonlinear phase noise (NLPN) is the main system impairment. APSK constellations can be regarded as a union of phase-shift keying (PSK) signal sets with different amplitude levels. A practical two-stage (TS) detection scheme is analyzed, which performs close to optimal detection for high enough input power. We optimize APSK constellations with 4, 8, and 16 points in terms of symbol error probability (SEP) under TS detection for several combinations of input power and fiber length. For 16 points, performance gains of 3.2 dB can be achieved at a SEP of 10-2 compared to 16-QAM by choosing an optimized APSK constellation. We also demonstrate that in the presence of severe nonlinear distortions, it may become beneficial to sacrifice a constellation point or an entire constellation ring to reduce the average SEP. Finally, we discuss the problem of selecting a good binary labeling for the found constellations.

Collaboration


Dive into the Alex Alvarado's collaboration.

Top Co-Authors

Avatar

Erik Agrell

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Polina Bayvel

University College London

View shared research outputs
Top Co-Authors

Avatar

Leszek Szczecinski

Institut national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Fredrik Brännström

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Domanic Lavery

University College London

View shared research outputs
Top Co-Authors

Avatar

Robert Maher

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexandre Graell i Amat

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Christian Häger

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Gabriele Liga

University College London

View shared research outputs
Researchain Logo
Decentralizing Knowledge