Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alex Arenas is active.

Publication


Featured researches published by Alex Arenas.


Journal of Statistical Mechanics: Theory and Experiment | 2005

Comparing community structure identification

Leon Danon; Albert Díaz-Guilera; Jordi Duch; Alex Arenas

We compare recent approaches to community structure identification in terms of sensitivity and computational cost. The recently proposed modularity measure is revisited and the performance of the methods as applied to ad hoc networks with known community structure, is compared. We find that the most accurate methods tend to be more computationally expensive, and that both aspects need to be considered when choosing a method for practical purposes. The work is intended as an introduction as well as a proposal for a standard benchmark test of community detection methods.


Physical Review E | 2005

Community detection in complex networks using extremal optimization.

Jordi Duch; Alex Arenas

We propose a method to find the community structure in complex networks based on an extremal optimization of the value of modularity. The method outperforms the optimal modularity found by the existing algorithms in the literature giving a better understanding of the community structure. We present the results of the algorithm for computer-simulated and real networks and compare them with other approaches. The efficiency and accuracy of the method make it feasible to be used for the accurate identification of community structure in large complex networks.


Physical Review E | 2003

Self-similar community structure in a network of human interactions.

Roger Guimerà; Leon Danon; Albert Díaz-Guilera; Francesc Giralt; Alex Arenas

We propose a procedure for analyzing and characterizing complex networks. We apply this to the social network as constructed from email communications within a medium sized university with about 1700 employees. Email networks provide an accurate and nonintrusive description of the flow of information within human organizations. Our results reveal the self-organization of the network into a state where the distribution of community sizes is self-similar. This suggests that a universal mechanism, responsible for emergence of scaling in other self-organized complex systems, as, for instance, river networks, could also be the underlying driving force in the formation and evolution of social networks.


Physical Review Letters | 2006

Synchronization Reveals Topological Scales in Complex Networks

Alex Arenas; Albert Díaz-Guilera; Conrad J. Pérez-Vicente

We study the relationship between topological scales and dynamic time scales in complex networks. The analysis is based on the full dynamics towards synchronization of a system of coupled oscillators. In the synchronization process, modular structures corresponding to well-defined communities of nodes emerge in different time scales, ordered in a hierarchical way. The analysis also provides a useful connection between synchronization dynamics, complex networks topology, and spectral graph analysis.


Physical Review Letters | 2002

Optimal network topologies for local search with congestion

Roger Guimerà; Albert Díaz-Guilera; Fernando Vega-Redondo; Antonio Cabrales; Alex Arenas

The problem of searchability in decentralized complex networks is of great importance in computer science, economy, and sociology. We present a formalism that is able to cope simultaneously with the problem of search and the congestion effects that arise when parallel searches are performed, and we obtain expressions for the average search cost both in the presence and the absence of congestion. This formalism is used to obtain optimal network structures for a system using a local search algorithm. It is found that only two classes of networks can be optimal: starlike configurations, when the number of parallel searches is small, and homogeneous-isotropic configurations, when it is large.


Physical Review Letters | 2013

Diffusion dynamics on multiplex networks.

Sergio Gómez; Albert Díaz-Guilera; Jesús Gómez-Gardeñes; Conrad J. Pérez-Vicente; Yamir Moreno; Alex Arenas

We study the time scales associated with diffusion processes that take place on multiplex networks, i.e., on a set of networks linked through interconnected layers. To this end, we propose the construction of a supra-laplacian matrix, which consists of a dimensional lifting of the laplacian matrix of each layer of the multiplex network. We use perturbative analysis to reveal analytically the structure of eigenvectors and eigenvalues of the complete network in terms of the spectral properties of the individual layers. The spectrum of the supra-laplacian allows us to understand the physics of diffusionlike processes on top of multiplex networks.


Physical Review X | 2013

Mathematical Formulation of Multilayer Networks

Manlio De Domenico; Albert Solé-Ribalta; Emanuele Cozzo; Mikko Kivelä; Yamir Moreno; Mason A. Porter; Sergio Gómez; Alex Arenas

A network representation is useful for describing the structure of a large variety of complex systems. However, most real and engineered systems have multiple subsystems and layers of connectivity, and the data produced by such systems are very rich. Achieving a deep understanding of such systems necessitates generalizing ‘‘traditional’’ network theory, and the newfound deluge of data now makes it possible to test increasingly general frameworks for the study of networks. In particular, although adjacency matrices are useful to describe traditional single-layer networks, such a representation is insufficient for the analysis and description of multiplex and time-dependent networks. One must therefore develop a more general mathematical framework to cope with the challenges posed by multilayer complex systems. In this paper, we introduce a tensorial framework to study multilayer networks, and we discuss the generalization of several important network descriptors and dynamical processes—including degree centrality, clustering coefficients, eigenvector centrality, modularity, von Neumann entropy, and diffusion—for this framework. We examine the impact of different choices in constructing these generalizations, and we illustrate how to obtain known results for the special cases of single-layer and multiplex networks. Our tensorial approach will be helpful for tackling pressing problems in multilayer complex systems, such as inferring who is influencing whom (and by which media) in multichannel social networks and developing routing techniques for multimodal transportation systems.


New Journal of Physics | 2008

Analysis of the structure of complex networks at different resolution levels

Alex Arenas; Alberto Fernández; Sergio Gómez

Modular structure is ubiquitous in real-world complex networks, and its detection is important because it gives insights in the structure-functionality relationship. The standard approach is based on the optimization of a quality function, modularity, which is a relative quality measure for a partition of a network into modules. Recently some authors have pointed out that the optimization of modularity has a fundamental drawback: the existence of a resolution limit beyond which no modular structure can be detected even though these modules might have own entity. The reason is that several topological descriptions of the network coexist at different scales, which is, in general, a fingerprint of complex systems. Here we propose a method that allows for multiple resolution screening of the modular structure. The method has been validated using synthetic networks, discovering the predefined structures at all scales. Its application to two real social networks allows to find the exact splits reported in the literature, as well as the substructure beyond the actual split.


Physical Review Letters | 2001

Communication in Networks with Hierarchical Branching

Alex Arenas; Albert Díaz-Guilera; Roger Guimerà

We present a simple model of communication in networks with hierarchical branching. We analyze the behavior of the model from the viewpoint of critical systems under different situations. For certain values of the parameters, a continuous phase transition between a sparse and a congested regime is observed and accurately described by an order parameter and the power spectra. At the critical point the behavior of the model is totally independent of the number of hierarchical levels. Also scaling properties are observed when the size of the system varies. The presence of noise in the communication is shown to break the transition. The analytical results are a useful guide to forecasting the main features of real networks.


Physical Review Letters | 2013

Dynamical Interplay between Awareness and Epidemic Spreading in Multiplex Networks

Clara Granell; Sergio Gómez; Alex Arenas

We present the analysis of the interrelation between two processes accounting for the spreading of an epidemic, and the information awareness to prevent its infection, on top of multiplex networks. This scenario is representative of an epidemic process spreading on a network of persistent real contacts, and a cyclic information awareness process diffusing in the network of virtual social contacts between the same individuals. The topology corresponds to a multiplex network where two diffusive processes are interacting affecting each other. The analysis using a microscopic Markov chain approach reveals the phase diagram of the incidence of the epidemics and allows us to capture the evolution of the epidemic threshold depending on the topological structure of the multiplex and the interrelation with the awareness process. Interestingly, the critical point for the onset of the epidemics has a critical value (metacritical point) defined by the awareness dynamics and the topology of the virtual network, from which the onset increases and the epidemics incidence decreases.

Collaboration


Dive into the Alex Arenas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Javier Borge-Holthoefer

Qatar Computing Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Clara Granell

Rovira i Virgili University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Albert Solé-Ribalta

Open University of Catalonia

View shared research outputs
Researchain Logo
Decentralizing Knowledge