Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alex Aussem is active.

Publication


Featured researches published by Alex Aussem.


Machine Learning | 2015

Unsupervised feature selection with ensemble learning

Haytham Elghazel; Alex Aussem

In this paper, we show that the way internal estimates are used to measure variable importance in Random Forests are also applicable to feature selection in unsupervised learning. We propose a new method called Random Cluster Ensemble (RCE for short), that estimates the out-of-bag feature importance from an ensemble of partitions. Each partition is constructed using a different bootstrap sample and a random subset of the features. We provide empirical results on nineteen benchmark data sets indicating that RCE, boosted with a recursive feature elimination scheme (RFE) (Guyon and Elisseeff, Journal of Machine Learning Research, 3:1157–1182, 2003), can lead to significant improvement in terms of clustering accuracy, over several state-of-the-art supervised and unsupervised algorithms, with a very limited subset of features. The method shows promise to deal with very large domains. All results, datasets and algorithms are available on line (http://perso.univ-lyon1.fr/haytham.elghazel/RCE.zip).


Pattern Recognition Letters | 2012

A semi-supervised feature ranking method with ensemble learning

Fazia Bellal; Haytham Elghazel; Alex Aussem

We consider the problem of using a large amount of unlabeled data to improve the efficiency of feature selection in high-dimension when only a small amount of labeled examples is available. We propose a new method called semi-supervised ensemble learning guided feature ranking method (SEFR for short), that combines a bagged ensemble of standard semi-supervised approaches with a permutation-based out-of-bag feature importance measure that takes into account both labeled and unlabeled data. We provide empirical results on several benchmark data sets indicating that SEFR can lead to significant improvement over state-of-the-art supervised and semi-supervised algorithms.


Expert Systems With Applications | 2016

Ensemble Multi-label Text Categorization based on Rotation Forest and Latent Semantic Indexing

Haytham Elghazel; Alex Aussem; Ouadie Gharroudi; Wafa Saadaoui

Abstract Text categorization has gained increasing popularity in the last years due the explosive growth of multimedia documents. As a document can be associated with multiple non-exclusive categories simultaneously (e.g., Virus, Health, Sports, and Olympic Games), text categorization provides many opportunities for developing novel multi-label learning approaches devoted specifically to textual data. In this paper, we propose an ensemble multi-label classification method for text categorization based on four key ideas: (1) performing Latent Semantic Indexing based on distinct orthogonal projections on lower-dimensional spaces of concepts; (2) random splitting of the vocabulary; (3) document bootstrapping; and (4) the use of BoosTexter as a powerful multi-label base learner for text categorization to simultaneously encourage diversity and individual accuracy in the committee. Diversity of the ensemble is promoted through random splits of the vocabulary that leads to different orthogonal projections on lower-dimensional latent concept spaces. Accuracy of the committee members is promoted through the underlying latent semantic structure uncovered in the text. The combination of both rotation-based ensemble construction and Latent Semantic Indexing projection is shown to bring about significant improvements in terms of Average Precision, Coverage, Ranking loss and One error compared to five state-of-the-art approaches across 14 real-word textual data sets covering a wide variety of topics including health, education, business, science and arts.


international conference on data mining | 2010

Feature Selection for Unsupervised Learning Using Random Cluster Ensembles

Haytham Elghazel; Alex Aussem

In this paper, we propose another extension of the Random Forests paradigm to unlabeled data, leading to localized unsupervised feature selection (FS). We show that the way internal estimates are used to measure variable importance in Random Forests are also applicable to FS in unsupervised learning. We first illustrate the clustering performance of the proposed method on various data sets based on widely used external criteria of clustering quality. We then assess the accuracy and the scalability of the FS procedure on UCI and real labeled data sets and compare its effectiveness against other FS methods.


BMC Bioinformatics | 2010

Analysis of lifestyle and metabolic predictors of visceral obesity with Bayesian Networks.

Alex Aussem; André Tchernof; Sergio Rodrigues de Morais; Sophie Rome

BackgroundThe aim of this study was to provide a framework for the analysis of visceral obesity and its determinants in women, where complex inter-relationships are observed among lifestyle, nutritional and metabolic predictors. Thirty-four predictors related to lifestyle, adiposity, body fat distribution, blood lipids and adipocyte sizes have been considered as potential correlates of visceral obesity in women. To properly address the difficulties in managing such interactions given our limited sample of 150 women, bootstrapped Bayesian networks were constructed based on novel constraint-based learning methods that appeared recently in the statistical learning community. Statistical significance of edge strengths was evaluated and the less reliable edges were pruned to increase the network robustness. To allow accessible interpretation and integrate biological knowledge into the final network, several undirected edges were afterwards directed with physiological expertise according to relevant literature.ResultsExtensive experiments on synthetic data sampled from a known Bayesian network show that the algorithm, called Recursive Hybrid Parents and Children (RHPC), outperforms state-of-the-art algorithms that appeared in the recent literature. Regarding biological plausibility, we found that the inference results obtained with the proposed method were in excellent agreement with biological knowledge. For example, these analyses indicated that visceral adipose tissue accumulation is strongly related to blood lipid alterations independent of overall obesity level.ConclusionsBayesian Networks are a useful tool for investigating and summarizing evidence when complex relationships exist among predictors, in particular, as in the case of multifactorial conditions like visceral obesity, when there is a concurrent incidence for several variables, interacting in a complex manner. The source code and the data sets used for the empirical tests are available at http://www710.univ-lyon1.fr/~aaussem/Software.html.


canadian conference on artificial intelligence | 2014

A Comparison of Multi-Label Feature Selection Methods Using the Random Forest Paradigm

Ouadie Gharroudi; Haytham Elghazel; Alex Aussem

In this paper, we discuss three wrapper multi-label feature selection methods based on the Random Forest paradigm. These variants differ in the way they consider label dependence within the feature selection process. To assess their performance, we conduct an extensive experimental comparison of these strategies against recently proposed approaches using seven benchmark multi-label data sets from different domains. Random Forest handles accurately the feature selection in the multi-label context. Surprisingly, taking into account the dependence between labels in the context of ensemble multi-label feature selection was not found very effective.


Expert Systems With Applications | 2014

A hybrid algorithm for Bayesian network structure learning with application to multi-label learning

Maxime Gasse; Alex Aussem; Haytham Elghazel

We present a novel hybrid algorithm for Bayesian network structure learning, called H2PC. It first reconstructs the skeleton of a Bayesian network and then performs a Bayesian-scoring greedy hill-climbing search to orient the edges. The algorithm is based on divide-and-conquer constraint-based subroutines to learn the local structure around a target variable. We conduct two series of experimental comparisons of H2PC against Max-Min Hill-Climbing (MMHC), which is currently the most powerful state-of-the-art algorithm for Bayesian network structure learning. First, we use eight well-known Bayesian network benchmarks with various data sizes to assess the quality of the learned structure returned by the algorithms. Our extensive experiments show that H2PC outperforms MMHC in terms of goodness of fit to new data and quality of the network structure with respect to the true dependence structure of the data. Second, we investigate H2PCs ability to solve the multi-label learning problem. We provide theoretical results to characterize and identify graphically the so-called minimal label powersets that appear as irreducible factors in the joint distribution under the faithfulness condition. The multi-label learning problem is then decomposed into a series of multi-class classification problems, where each multi-class variable encodes a label powerset. H2PC is shown to compare favorably to MMHC in terms of global classification accuracy over ten multi-label data sets covering different application domains. Overall, our experiments support the conclusions that local structural learning with H2PC in the form of local neighborhood induction is a theoretically well-motivated and empirically effective learning framework that is well suited to multi-label learning. The source code (in R) of H2PC as well as all data sets used for the empirical tests are publicly available.


european conference on machine learning | 2012

An experimental comparison of hybrid algorithms for bayesian network structure learning

Maxime Gasse; Alex Aussem; Haytham Elghazel

We present a novel hybrid algorithm for Bayesian network structure learning, called Hybrid HPC (H2PC). It first reconstructs the skeleton of a Bayesian network and then performs a Bayesian-scoring greedy hill-climbing search to orient the edges. It is based on a subroutine called HPC, that combines ideas from incremental and divide-and-conquer constraint-based methods to learn the parents and children of a target variable. We conduct an experimental comparison of H2PC against Max-Min Hill-Climbing (MMHC), which is currently the most powerful state-of-the-art algorithm for Bayesian network structure learning, on several benchmarks with various data sizes. Our extensive experiments show that H2PC outperforms MMHC both in terms of goodness of fit to new data and in terms of the quality of the network structure itself, which is closer to the true dependence structure of the data. The source code (in R) of H2PC as well as all data sets used for the empirical tests are publicly available.


international conference on data mining | 2011

Semi-supervised Feature Importance Evaluation with Ensemble Learning

Hasna Barkia; Haytham Elghazel; Alex Aussem

We consider the problem of using a large amount of unlabeled data to improve the efficiency of feature selection in high dimensional datasets, when only a small set of labeled examples is available. We propose a new semi-supervised feature importance evaluation method (SSFI for short), that combines ideas from co-training and random forests with a new permutation-based out-of-bag feature importance measure. We provide empirical results on several benchmark datasets indicating that SSFI can lead to significant improvement over state-of-the-art semi-supervised and supervised algorithms.


Computers in Biology and Medicine | 2013

Learning the local Bayesian network structure around the ZNF217 oncogene in breast tumours

Emmanuel Prestat; Sergio Rodrigues de Morais; J. Vendrell; Aurélie Thollet; Christian Gautier; Pascale Cohen; Alex Aussem

In this study, we discuss and apply a novel and efficient algorithm for learning a local Bayesian network model in the vicinity of the ZNF217 oncogene from breast cancer microarray data without having to decide in advance which genes have to be included in the learning process. ZNF217 is a candidate oncogene located at 20q13, a chromosomal region frequently amplified in breast and ovarian cancer, and correlated with shorter patient survival in these cancers. To properly address the difficulties in managing complex gene interactions given our limited sample, statistical significance of edge strengths was evaluated using bootstrapping and the less reliable edges were pruned to increase the network robustness. We found that 13 out of the 35 genes associated with deregulated ZNF217 expression in breast tumours have been previously associated with survival and/or prognosis in cancers. Identifying genes involved in lipid metabolism opens new fields of investigation to decipher the molecular mechanisms driven by the ZNF217 oncogene. Moreover, nine of the 13 genes have already been identified as putative ZNF217 targets by independent biological studies. We therefore suggest that the algorithms for inferring local BNs are valuable data mining tools for unraveling complex mechanisms of biological pathways from expression data. The source code is available at http://www710.univ-lyon1.fr/∼aaussem/Software.html.

Collaboration


Dive into the Alex Aussem's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge