Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alex Boyko is active.

Publication


Featured researches published by Alex Boyko.


PLOS ONE | 2010

Transgenerational Adaptation of Arabidopsis to Stress Requires DNA Methylation and the Function of Dicer-Like Proteins

Alex Boyko; Todd Blevins; Youli Yao; Andrey Golubov; Andriy Bilichak; Yaroslav Ilnytskyy; Jens Hollander; Frederick Meins; Igor Kovalchuk

Epigenetic states and certain environmental responses in mammals and seed plants can persist in the next sexual generation. These transgenerational effects have potential adaptative significance as well as medical and agronomic ramifications. Recent evidence suggests that some abiotic and biotic stress responses of plants are transgenerational. For example, viral infection of tobacco plants and exposure of Arabidopsis thaliana plants to UVC and flagellin can induce transgenerational increases in homologous recombination frequency (HRF). Here we show that exposure of Arabidopsis plants to stresses, including salt, UVC, cold, heat and flood, resulted in a higher HRF, increased global genome methylation, and higher tolerance to stress in the untreated progeny. This transgenerational effect did not, however, persist in successive generations. Treatment of the progeny of stressed plants with 5-azacytidine was shown to decrease global genomic methylation and enhance stress tolerance. Dicer-like (DCL) 2 and DCL3 encode Dicer activities important for small RNA-dependent gene silencing. Stress-induced HRF and DNA methylation were impaired in dcl2 and dcl3 deficiency mutants, while in dcl2 mutants, only stress-induced stress tolerance was impaired. Our results are consistent with the hypothesis that stress-induced transgenerational responses in Arabidopsis depend on altered DNA methylation and smRNA silencing pathways.Plants exposed to stress pass the memory of exposure to stress to the progeny. Previously, we showed that the phenomenon of transgenerational memory of stress is of epigenetic nature and depends on the function of Dicer-like (DCL) 2 and DCL3 proteins. Here, we discuss a possible role of DNA methylation and function of small RNAs in establishing and maintaining transgenerational responses to stress. Our new data report that memory of stress is passed to the progeny predominantly through the female rather than male gamete. Possible evolutionary advantages of this mechanism are also discussed.


Current Opinion in Plant Biology | 2011

Genome instability and epigenetic modification — heritable responses to environmental stress?

Alex Boyko; Igor Kovalchuk

As sessile organisms, plants need to continuously adjust their responses to external stimuli to cope with changing growth conditions. Since the seed dispersal range is often rather limited, exposure of progeny to the growth conditions of parents is very probable. The plasticity of plant phenotypes cannot be simply explained by genetic changes such as point mutations, deletions, insertions and gross chromosomal rearrangements. Since many environmental stresses persist for only one or several plant generations, other mechanisms of adaptation must exist. The heritability of reversible epigenetic modifications that regulate gene expression without changing DNA sequence makes them an attractive alternative mechanism. In this review, we discuss recent advances in understanding how changes in genome stability and epigenetically mediated changes in gene expression could contribute to plant adaptation. We provide examples of environmentally induced transgenerational epigenetic effects that include the appearance of new phenotypes in successive generations of stressed plants. We also describe several cases in which exposure to stress leads to nonrandom heritable but reversible changes in stress tolerance in the progeny of stressed plants.


Cell Cycle | 2007

Estrogen-Induced Rat Breast Carcinogenesis is Characterized by Alterations in DNA Methylation, Histone Modifications, and Aberrant microRNA Expression

Olga Kovalchuk; Volodymyr Tryndyak; Beverly Montgomery; Alex Boyko; Kristy Kutanzi; Franz J. Zemp; Alan Warbritton; John R. Latendresse; Igor Kovalchuk; Frederick A. Beland; Igor P. Pogribny

Breast cancer is the most common malignancy in women continuing to rise worldwide. Breast cancer emerges through a multi-step process, encompassing progressive changes from a normal cell to hyperplasia (with and without atypia), carcinoma in situ, invasive carcinoma, and metastasis. In the current study, we analyzed the morphological changes and alterations of DNA methylation, histone methylation and microRNA expression during estradiol-17β (E2)-induced mammary carcinogenesis in female August Copenhagen Irish (ACI) rats. E2-induced breast carcinogenesis in ACI rats provides a physiologically relevant and genetically defined animal model for studying human sporadic breast cancer. The pattern of morphological changes in mammary glands during E2-induced carcinogenesis was characterized by transition from normal appearing alveolar and ductular hyperplasia to focal hyperplastic areas of atypical glands and ducts accompanied by a rapid and sustained loss of global DNA methylation, LINE-1 hypomethylation, loss of histone H3 lysine 9 and histone H4 lysine 20 trimethylation, and altered microRNAs expression. More importantly, these alterations in the mammary tissue occurred after 6 weeks of E2-treatment, whereas the atypical hyperplasia, which represents a putative precursor lesion to mammary carcinoma in this model, was detected only after 12 weeks of exposure, demonstrating clearly that these events are directly associated with the effects of E2 and are not a consequence of the preexisting preneoplastic lesions. The results of this study show that deregulation of cellular epigenetic processes plays a crucial role in the mechanism of E2-induced mammary carcinogenesis in ACI rats, especially in the tumor initiation process.


Plant Signaling & Behavior | 2010

Transgenerational response to stress in Arabidopsis thaliana.

Alex Boyko; Igor Kovalchuk

Plants exposed to stress pass the memory of exposure to stress to the progeny. Previously, we showed that the phenomenon of transgenerational memory of stress is of epigenetic nature and depends on the function of Dicer-like (DCL) 2 and DCL3 proteins. Here, we discuss a possible role of DNA methylation and function of small RNAs in establishing and maintaining transgenerational responses to stress. Our new data report that memory of stress is passed to the progeny predominantly through the female rather than male gamete. Possible evolutionary advantages of this mechanism are also discussed.


Molecular Plant | 2011

Genetic and Epigenetic Effects of Plant-Pathogen Interactions: An Evolutionary Perspective

Alex Boyko; Igor Kovalchuk

Recent reports suggest that exposure to stress is capable of influencing the frequency and pattern of inherited changes in various parts of the genome. In this review, we will discuss the influence of viral pathogens on somatic and meiotic genome stability of Nicotiana tabacum and Arabidopsis thaliana. Plants infected with a compatible pathogen generate a systemic recombination signal that precedes the spread of pathogens and results in changes in the somatic and meiotic recombination frequency. The progeny of infected plants exhibit changes in global and locus-specific DNA methylation patterns, genomic rearrangements at transgenic reporter loci and resistance gene-like-loci, and even tolerance to pathogen infection and abiotic stress. Here, we will discuss the contribution of environmental stresses to genome evolution and will focus on the role of heritable epigenetic changes in response to pathogen infection.


Plant and Cell Physiology | 2010

Chlorine Ions but not Sodium Ions Alter Genome Stability of Arabidopsis thaliana

Alex Boyko; Andrey Golubov; Andriy Bilichak; Igor Kovalchuk

Various environmental stresses influence plant genome stability. Most of these stresses, such as ionizing radiation, heavy metals and organic chemicals, represent potent DNA-damaging agents. Here, we show that exposure to NaCl, the stress that is not thought to cause direct DNA damage, results in an increase in the level of strand breaks and homologous recombination rates (RRs) in Arabidopsis thaliana plants. The effect of salt stress on the RR was found to be primarily associated with Cl(-) ions, since exposure of plants to Na(2)SO(4) did not increase the RR, whereas exposure to MgCl(2) resulted in an increase. Changes in the number of strand breaks and in the RR were also paralleled by transcriptional activation of AtRad51 and down-regulation of AtKu70. The progeny of exposed plants exhibited higher RRs, higher expression of AtRad51, lower expression of AtKu70, higher tolerance to salt and methyl methane sulfate (MMS) stresses, as well as a higher increase in RR upon further exposure to stress. Our experiments showed that NaCl is a genotoxic stress that leads to somatic and transgenerational changes in recombination rates, and these changes are primarily triggered by exposure to Cl(-) ions.


Plant Physiology | 2010

Microsatellite Instability in Arabidopsis Increases with Plant Development

Andrey Golubov; Youli Yao; Priti Maheshwari; Andriy Bilichak; Alex Boyko; François Belzile; Igor Kovalchuk

Plant development consists of the initial phase of intensive cell division followed by continuous genome endoreduplication, cell growth, and elongation. The maintenance of genome stability under these conditions is the main task performed by DNA repair and genome surveillance mechanisms. Our previous work showed that the rate of homologous recombination repair in older plants decreases. We hypothesized that this age-dependent decrease in the recombination rate is paralleled with other changes in DNA repair capacity. Here, we analyzed microsatellite stability using transgenic Arabidopsis (Arabidopsis thaliana) plants that carry the nonfunctional β-glucuronidase gene disrupted by microsatellite repeats. We found that microsatellite instability increased dramatically with plant age. We analyzed the contribution of various mechanisms to microsatellite instability, including replication errors and mistakes of DNA repair mechanisms such as mismatch repair, excision repair, and strand break repair. Analysis of total DNA polymerase activity using partially purified protein extracts showed an age-dependent decrease in activity and an increase in fidelity. Analysis of the steady-state RNA level of DNA replicative polymerases α, δ, Pol I-like A, and Pol I-like B and the expression of mutS homolog 2 (Msh2) and Msh6 showed an age-dependent decrease. An in vitro repair assay showed lower efficiency of nonhomologous end joining in older plants, paralleled by an increase in Ku70 gene expression. Thus, we assume that the more frequent involvement of nonhomologous end joining in strand break repair and the less efficient end-joining repair together with lower levels of mismatch repair activities may be the main contributors to the observed age-dependent increase in microsatellite instability.


Plant Cell Reports | 2009

High frequency Agrobacterium tumefaciens-mediated plant transformation induced by ammonium nitrate.

Alex Boyko; Aki Matsuoka; Igor Kovalchuk

Success in plant genetic transformation depends on the efficiency of explant regeneration and transgene integration. Whereas the former one depends on explant totipotency, the latter depends on the activity of host DNA repair and chromatin organisation factors. We analyzed whether factors that result in an increase in recombination frequency can also increase transformation efficiency. Here, we report that a threefold increase in the concentration of NH4NO3 in the growth medium results in more than a threefold increase in the Agrobacterium tumefaciens-mediated transformation frequency of Nicotiana tabacum plants. Regeneration of calli without selection showed that the increase in transformation frequency was primarily due to the increase in transgene integration efficiency rather than in tissue regeneration efficiency. PCR analysis of insertion sites showed a decrease in the frequency of truncations of the T-DNA right border and an increase on the left border. We hypothesize that exposure to ammonium nitrate modifies the activity of host factors leading to higher frequency of transgene integrations and possibly to the shift in the mechanism of transgene integrations.


New Biotechnology | 2010

Acute but not chronic exposure to abiotic stress results in transient reduction of expression levels of the transgene driven by the 35S promoter.

Alex Boyko; Jean Molinier; Waine Chatter; André Laroche; Igor Kovalchuk

The transgenic plant performance depends on the stable expression of the integrated transgene. In this paper, we have analyzed the stability of the most frequently used constitutive promoter, the cauliflower mosaic virus (CaMV) 35S promoter. We used several independent Nicotiana tabacum lines transgenic for the luciferase (LUC) or green fluorescence protein (GFP) coding genes driven by the same 35S promoter. As an indication of the expression level, we measured the steady state RNA level, protein level and protein activity. Exposure of plants to an acute single dose of UVC, UVB or X-ray radiation resulted in a decrease of the transgene expression level, whereas exposure to high temperature increased it. In most of the cases, the expression changed at one to two hours post exposure and returned to normal at four hours. By contrast, plants germinated and grown in the presence of a low dose of either UVB radiation or CuSO(4) for two weeks did not show any changes in expression level. We conclude that although the expression level of the transgenes driven by the 35S promoter can be transiently altered by the acute exposure, no substantial changes occur upon constant low exposure.


Methods of Molecular Biology | 2010

Detection of Changes in Global Genome Methylation Using the Cytosine-Extension Assay

Alex Boyko; Igor Kovalchuk

Methylation is a reversible covalent chemical modification of DNA intended to regulate gene expression, genome stability, and chromatin structure. Although there are various methods of methylation analysis, most of them are either laborious or expensive, or both. Here, we describe a quick, inexpensive method for analysis of global genome methylation using a cytosine extension assay. The assay can be used for analysis of the total level of CpG, CNpG, and asymmetrical methylation in a given cell culture or in a plant tissue sample.

Collaboration


Dive into the Alex Boyko's collaboration.

Top Co-Authors

Avatar

Igor Kovalchuk

University of Lethbridge

View shared research outputs
Top Co-Authors

Avatar

Andrey Golubov

University of Lethbridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Olga Kovalchuk

University of Lethbridge

View shared research outputs
Top Co-Authors

Avatar

Igor P. Pogribny

National Center for Toxicological Research

View shared research outputs
Top Co-Authors

Avatar

Volodymyr Tryndyak

National Center for Toxicological Research

View shared research outputs
Top Co-Authors

Avatar

Aki Matsuoka

University of Lethbridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Youli Yao

University of Lethbridge

View shared research outputs
Top Co-Authors

Avatar

Frederick A. Beland

National Center for Toxicological Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge