Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alex de Crespigny is active.

Publication


Featured researches published by Alex de Crespigny.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Cortical depth-specific microvascular dilation underlies laminar differences in blood oxygenation level-dependent functional MRI signal

Peifang Tian; Ivan C. Teng; Larry D. May; Ronald Kurz; Kun Lu; Miriam Scadeng; Elizabeth M. C. Hillman; Alex de Crespigny; Helen D’Arceuil; Joseph B. Mandeville; John J. A. Marota; Bruce R. Rosen; Thomas T. Liu; David A. Boas; Richard B. Buxton; Anders M. Dale; Anna Devor

Changes in neuronal activity are accompanied by the release of vasoactive mediators that cause microscopic dilation and constriction of the cerebral microvasculature and are manifested in macroscopic blood oxygenation level-dependent (BOLD) functional MRI (fMRI) signals. We used two-photon microscopy to measure the diameters of single arterioles and capillaries at different depths within the rat primary somatosensory cortex. These measurements were compared with cortical depth-resolved fMRI signal changes. Our microscopic results demonstrate a spatial gradient of dilation onset and peak times consistent with “upstream” propagation of vasodilation toward the cortical surface along the diving arterioles and “downstream” propagation into local capillary beds. The observed BOLD response exhibited the fastest onset in deep layers, and the “initial dip” was most pronounced in layer I. The present results indicate that both the onset of the BOLD response and the initial dip depend on cortical depth and can be explained, at least in part, by the spatial gradient of delays in microvascular dilation, the fastest response being in the deep layers and the most delayed response in the capillary bed of layer I.


PLOS ONE | 2010

Quantitative Histological Validation of Diffusion MRI Fiber Orientation Distributions in the Rat Brain

Trygve B. Leergaard; Nathan S. White; Alex de Crespigny; Ingeborg Bolstad; Helen D'Arceuil; Jan G. Bjaalie; Anders M. Dale

Diffusion MRI (dMRI) is widely used to measure microstructural features of brain white matter, but commonly used dMRI measures have limited capacity to resolve the orientation structure of complex fiber architectures. While several promising new approaches have been proposed, direct quantitative validation of these methods against relevant histological architectures remains missing. In this study, we quantitatively compare neuronal fiber orientation distributions (FODs) derived from ex vivo dMRI data against histological measurements of rat brain myeloarchitecture using manual recordings of individual myelin stained fiber orientations. We show that accurate FOD estimates can be obtained from dMRI data, even in regions with complex architectures of crossing fibers with an intrinsic orientation error of approximately 5–6 degrees in these regions. The reported findings have implications for both clinical and research studies based on dMRI FOD measures, and provide an important biological benchmark for improved FOD reconstruction and fiber tracking methods.


NeuroImage | 2007

The effects of brain tissue decomposition on diffusion tensor imaging and tractography

Helen E. D’Arceuil; Alex de Crespigny

There have been numerous high resolution diffusion tensor imaging studies in fixed animal brains, but relatively few studies in human brains. While animal tissues are generally fixed pre-mortem or directly postmortem, this is not possible for human tissue, therefore there is always some delay between death and tissue fixation. The elapsed time between death and tissue fixation, the postmortem interval (PMI), will most likely adversely affect the tissues diffusion properties. We studied the effects of PMI on the diffusion properties of rodent brain. Eight mice were euthanized and the brains (kept in the skull) were placed in formalin at PMIs of 0, 1, 4 and 14 days. Post fixation they were placed in a solution of GdDTPA and phosphate buffered saline. Brains were scanned with a 3D EPI DTI sequence at 4.7T. DTI data were processed to generate apparent diffusion coefficient (ADC) and fractional anisotropy (FA) maps. DTI tractography was also performed. The temporal changes in regional ADC and FA values were analyzed statistically using a one-way ANOVA, followed by individual Students T-tests. Regional FA and ADC of gray and white matter decreased significantly with time (p<0.05). DTI tractography showed a decrease in the number and coherence of reconstructed fiber pathways between PMIs 0 and 14. Elapsed time between death and tissue fixation has a major effect upon the brains diffusion properties and should be born in mind when interpreting fixed brain DTI.


Journal of the Neurological Sciences | 1999

Dynamics of cerebral injury, perfusion, and blood-brain barrier changes after temporary and permanent middle cerebral artery occlusion in the rat

Andreas Kastrup; Tobias Engelhorn; Christian Beaulieu; Alex de Crespigny; Michael E. Moseley

By means of magnetic resonance imaging (MRI) we longitudinally monitored the evolution of ischemic injury, changes in cerebral hemodynamics and alterations of the blood-brain barrier (BBB) during permanent or temporary middle cerebral artery occlusion (MCAO) in rats. Using the intraluminal suture occlusion model, male Sprague-Dawley rats were subjected to either permanent MCAO (Group A, n = 6), reperfusion after 1 h (Group B, n = 5), or reperfusion after 3 h (Group C, n = 5). Diffusion- and perfusion-weighted MRI and Gd-DTPA enhanced T1-weighted images were performed at six time points from 0.5 to 6 h post-MCAO. The lesion volume increased progressively in group A, decreased significantly in group B (P<0.01), and only showed a tendency toward reduction in group C. Perfusion-weighted MRI delineated severe perfusion deficits in the ischemic core, confirmed early and late reperfusion, and was able to demonstrate postischemic hyperperfusion in group C. Gd-DTPA extravasation was found in all animals with permanent MCAO and initially became grossly visible between 4.5 and 6 h post-MCAO. While only 2 animals demonstrated contrast enhancement in group B, widespread BBB changes were detected immediately following late reperfusion (Group C). Our results demonstrate that with advanced MRI techniques, alterations of the BBB can be correlated with the hemodynamic and biophysical consequences of reperfusion.


Stroke | 2007

Serial Diffusion Tensor MRI After Transient and Permanent Cerebral Ischemia in Nonhuman Primates

Yutong Liu; Helen E. D’Arceuil; Susan V. Westmoreland; Julian He; Michael Duggan; R. Gilberto Gonzalez; Johnny C. Pryor; Alex de Crespigny

Background and Purpose— We measured the temporal evolution of the T2 and diffusion tensor imaging parameters after transient and permanent cerebral middle cerebral artery occlusion (MCAo) in macaques, and compared it to standard histological analysis at the study end point. Methods— Stroke was created in adult male macaques by occluding a middle cerebral artery branch for 3 hours (transient MCAo, n=4 or permanent occlusion, n=3). Conventional MRI and diffusion tensor imaging scans were performed 0 (acute day), 1, 3, 7, 10, 17, and 30 days after MCAo. Animals were euthanized after the final scan and the brains removed for histological analysis. Results— Apparent diffusion coefficient in the lesion was decreased acutely, fractional anisotropy was elevated, and T2 remained normal. Thereafter, apparent diffusion coefficient increased above normal, fractional anisotropy decreased to below normal, T2 increased to a maximum and then declined. Reperfusion at 3 hours accelerated these MRI changes. Only the fractional anisotropy value was significantly different between transient and permanent groups at 30 days. Final MRI-defined fractional lesion volumes were well correlated with corresponding histological lesion volumes. Permanent MCAO animals showed more severe histological damage than their transient MCAO counterparts, especially myelin damage and axonal swelling. Conclusions— Overall, the MRI evolution of stroke in macaques was closer to what has been observed in humans than in rodent models. This work supports the use of serial MRI in stroke studies in nonhuman primates.


Stroke | 2000

99mTc Annexin V Imaging of Neonatal Hypoxic Brain Injury

Helen D’Arceuil; William D. Rhine; Alex de Crespigny; Midori A. Yenari; John F. Tait; William H. Strauss; Tobias Engelhorn; Andreas Kastrup; Michael E. Moseley; Francis G. Blankenberg

Background and Purpose— Delayed cell loss in neonates after cerebral hypoxic-ischemic injury (HII) is believed to be a major cause of cerebral palsy. In this study, we used radiolabeled annexin V, a marker of delayed cell loss (apoptosis), to image neonatal rabbits suffering from HII. Methods Twenty-two neonatal New Zealand White rabbits had ligation of the right common carotid artery with reduction of inspired oxygen concentration to induce HII. Experimental animals (n=17) were exposed to hypoxia until an ipsilateral hemispheric decrease in the average diffusion coefficient occurred. After reversal of hypoxia and normalization of average diffusion coefficient values, experimental animals were injected with 99mTc annexin V. Radionuclide images were recorded 2 hours later. Results Experimental animals showed no MR evidence of blood-brain barrier breakdown or perfusion abnormalities after hypoxia. Annexin images demonstrated multifocal brain uptake in both hemispheres of experimental but not control animals. Histology of the brains from experimental animals demonstrated scattered pyknotic cortical and hippocampal neurons with cytoplasmic vacuolization of glial cells without evidence of apoptotic nuclei by terminal deoxynucleotidyl transferase–mediated dUTP nick end-labeling (TUNEL) staining. Double staining with markers of cell type and exogenous annexin V revealed that annexin V was localized in the cytoplasm of scattered neurons and astrocytes in experimental and, less commonly, control brains in the presence of an intact blood-brain barrier. Conclusions Apoptosis may develop after HII even in brains that appear normal on diffusion-weighted and perfusion MR. These data suggest a role of radiolabeled annexin V screening of neonates at risk for the development of cerebral palsy.


Journal of Neuroscience Methods | 2008

3D micro-CT imaging of the Postmortem Brain

Alex de Crespigny; Hani Bou-Reslan; Merry Nishimura; Heidi S. Phillips; Richard A. D. Carano; Helen E. D’Arceuil

Magnetic resonance microscopy (microMRI) is becoming an important tool for non-destructive analysis of fixed brain tissue. However, unlike MRI, X-ray computed tomography (CT) scans show little native soft tissue contrast. In this paper, we explored the use of contrast enhanced (brains immersion stained in iodinated CT contrast media) micro-CT (microCT) for high resolution 3D imaging of fixed normal and pathological brains, compared to microMRI and standard histopathology. An optimum iodine concentration of 0.27 M resulted in excellent contrast between gray and white matter in normal brain and a wide range of anatomical structures were identified. In glioma bearing mouse brains, there was clear deliniation of tumor margin which closely matched that seen on histopathology sections. microCT tumor volume was strongly correlated with histopathology volume. Our data suggests that microCT image contrast in the immersion-stained brains is related to axonal density and myelin content. Compared to traditional histopathology, our microCT approach is relatively rapid and less labor intensive. In addition, compared to microMRI, microCT is robust and requires much lower equipment and maintenance costs. For simple measurements, such as tumor volume and non-destructive postmortem brain screening, microCT may prove to be a valuable alternative to standard histopathology or microMRI.


Magnetic Resonance in Medicine | 2004

Direct CSF injection of MnCl2 for dynamic manganese-enhanced MRI

Christina H. Liu; Helen D'Arceuil; Alex de Crespigny

MnCl2 was injected intrathecally through the cisterna magna in rats, allowing infusion of divalent manganese ions (Mn++) into the CSF space and thence into the brain, without breaking the blood–brain barrier (BBB). Mn++ uptake and washout dynamics in the brain were measured by serial T1‐weighted MRI and EPI T1 and T2 mapping for up to 3 weeks after injection. Observations within the first 6 hr after injection demonstrated anterograde and bilateral distribution of the Mn++ within the CSF space, from the olfactory bulb and frontal cortex to the brain stem. Enhancement increased in most brain areas up to 4 days after injection, and then slowly decreased. Relaxation maps at each time point demonstrated higher concentrations of Mn in basal ganglia. Residual concentrations were still observable after 3 weeks in all brain regions. With the use of MnCl2 calibration phantoms, the maximum Mn concentration in the brain was estimated to be approximately 27 ± 16 μM, corresponding to changes in relaxation rates of 0.49 ± 0.30 s−1 for R1 and 3.9 ± 2.4 s−1 for R2. For comparison, an intrathecal GdDTPA injection was performed. This injection showed different distribution dynamics: it remained chiefly within the CSF spaces, and was largely washed out after 1 day. This method shows promise as a means of supplying Mn++ uniformly to the whole brain for a variety of chronic functional activation studies. Magn Reson Med 51:978–987, 2004.


Cerebral Cortex | 2015

Validation of High-Resolution Tractography Against In Vivo Tracing in the Macaque Visual Cortex

Hojjatollah Azadbakht; Laura M. Parkes; Hamied A. Haroon; M Augath; Nk Logothetis; Alex de Crespigny; Helen D'Arceuil; Geoffrey J. M. Parker

Diffusion magnetic resonance imaging (MRI) allows for the noninvasive in vivo examination of anatomical connections in the human brain, which has an important role in understanding brain function. Validation of this technique is vital, but has proved difficult due to the lack of an adequate gold standard. In this work, the macaque visual system was used as a model as an extensive body of literature of in vivo and postmortem tracer studies has established a detailed understanding of the underlying connections. We performed probabilistic tractography on high angular resolution diffusion imaging data of 2 ex vivo, in vitro macaque brains. Comparisons were made between identified connections at different thresholds of probabilistic connection “strength,” and with various tracking optimization strategies previously proposed in the literature, and known connections from the detailed visual system wiring map described by Felleman and Van Essen (1991; FVE91). On average, 74% of connections that were identified by FVE91 were reproduced by performing the most successfully optimized probabilistic diffusion MRI tractography. Further comparison with the results of a more recent tracer study ( Markov et al. 2012) suggests that the fidelity of tractography in estimating the presence or absence of interareal connections may be greater than this.


Developmental Neuroscience | 2008

Three-Dimensional High-Resolution Diffusion Tensor Imaging and Tractography of the Developing Rabbit Brain

Helen D’Arceuil; Christina H. Liu; Pat Levitt; Barbara L. Thompson; Barry E. Kosofsky; Alex de Crespigny

Diffusion tensor imaging (DTI) is sensitive to structural ordering in brain tissue particularly in the white matter tracts. Diffusion anisotropy changes with disease and also with neural development. We used high-resolution DTI of fixed rabbit brains to study developmental changes in regional diffusion anisotropy and white matter fiber tract development. Imaging was performed on a 4.7-tesla Bruker Biospec Avance scanner using custom-built solenoid coils and DTI was performed at various postnatal ages. Trace apparent diffusion coefficient, fractional diffusion anisotropy maps and fiber tracts were generated and compared across the ages. The brain was highly anisotropic at birth and white matter anisotropy increased with age. Regional DTI tractography of the internal capsule showed refinement in regional tract architecture with maturation. Interestingly, brains with congenital deficiencies of the callosal commissure showed selectively strikingly different fiber architecture compared to age-matched brains. There was also some evidence of subcortical to cortical fiber connectivity. DTI tractography of the anterior and posterior limbs of the internal capsule showed reproducibly coherent fiber tracts corresponding to known corticospinal and corticobulbar tract anatomy. There was some minor interanimal tract variability, but there was remarkable similarity between the tracts in all animals. Therefore, ex vivo DTI tractography is a potentially powerful tool for neuroscience investigations and may also reveal effects (such as fiber tract pruning during development) which may be important targets for in vivo human studies.

Collaboration


Dive into the Alex de Crespigny's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge