Helen E. D’Arceuil
Harvard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Helen E. D’Arceuil.
NeuroImage | 2007
Helen E. D’Arceuil; Alex de Crespigny
There have been numerous high resolution diffusion tensor imaging studies in fixed animal brains, but relatively few studies in human brains. While animal tissues are generally fixed pre-mortem or directly postmortem, this is not possible for human tissue, therefore there is always some delay between death and tissue fixation. The elapsed time between death and tissue fixation, the postmortem interval (PMI), will most likely adversely affect the tissues diffusion properties. We studied the effects of PMI on the diffusion properties of rodent brain. Eight mice were euthanized and the brains (kept in the skull) were placed in formalin at PMIs of 0, 1, 4 and 14 days. Post fixation they were placed in a solution of GdDTPA and phosphate buffered saline. Brains were scanned with a 3D EPI DTI sequence at 4.7T. DTI data were processed to generate apparent diffusion coefficient (ADC) and fractional anisotropy (FA) maps. DTI tractography was also performed. The temporal changes in regional ADC and FA values were analyzed statistically using a one-way ANOVA, followed by individual Students T-tests. Regional FA and ADC of gray and white matter decreased significantly with time (p<0.05). DTI tractography showed a decrease in the number and coherence of reconstructed fiber pathways between PMIs 0 and 14. Elapsed time between death and tissue fixation has a major effect upon the brains diffusion properties and should be born in mind when interpreting fixed brain DTI.
Stroke | 2007
Yutong Liu; Helen E. D’Arceuil; Susan V. Westmoreland; Julian He; Michael Duggan; R. Gilberto Gonzalez; Johnny C. Pryor; Alex de Crespigny
Background and Purpose— We measured the temporal evolution of the T2 and diffusion tensor imaging parameters after transient and permanent cerebral middle cerebral artery occlusion (MCAo) in macaques, and compared it to standard histological analysis at the study end point. Methods— Stroke was created in adult male macaques by occluding a middle cerebral artery branch for 3 hours (transient MCAo, n=4 or permanent occlusion, n=3). Conventional MRI and diffusion tensor imaging scans were performed 0 (acute day), 1, 3, 7, 10, 17, and 30 days after MCAo. Animals were euthanized after the final scan and the brains removed for histological analysis. Results— Apparent diffusion coefficient in the lesion was decreased acutely, fractional anisotropy was elevated, and T2 remained normal. Thereafter, apparent diffusion coefficient increased above normal, fractional anisotropy decreased to below normal, T2 increased to a maximum and then declined. Reperfusion at 3 hours accelerated these MRI changes. Only the fractional anisotropy value was significantly different between transient and permanent groups at 30 days. Final MRI-defined fractional lesion volumes were well correlated with corresponding histological lesion volumes. Permanent MCAO animals showed more severe histological damage than their transient MCAO counterparts, especially myelin damage and axonal swelling. Conclusions— Overall, the MRI evolution of stroke in macaques was closer to what has been observed in humans than in rodent models. This work supports the use of serial MRI in stroke studies in nonhuman primates.
Journal of Neuroscience Methods | 2008
Alex de Crespigny; Hani Bou-Reslan; Merry Nishimura; Heidi S. Phillips; Richard A. D. Carano; Helen E. D’Arceuil
Magnetic resonance microscopy (microMRI) is becoming an important tool for non-destructive analysis of fixed brain tissue. However, unlike MRI, X-ray computed tomography (CT) scans show little native soft tissue contrast. In this paper, we explored the use of contrast enhanced (brains immersion stained in iodinated CT contrast media) micro-CT (microCT) for high resolution 3D imaging of fixed normal and pathological brains, compared to microMRI and standard histopathology. An optimum iodine concentration of 0.27 M resulted in excellent contrast between gray and white matter in normal brain and a wide range of anatomical structures were identified. In glioma bearing mouse brains, there was clear deliniation of tumor margin which closely matched that seen on histopathology sections. microCT tumor volume was strongly correlated with histopathology volume. Our data suggests that microCT image contrast in the immersion-stained brains is related to axonal density and myelin content. Compared to traditional histopathology, our microCT approach is relatively rapid and less labor intensive. In addition, compared to microMRI, microCT is robust and requires much lower equipment and maintenance costs. For simple measurements, such as tumor volume and non-destructive postmortem brain screening, microCT may prove to be a valuable alternative to standard histopathology or microMRI.
The Open Neuroimaging Journal | 2007
Cristina Granziera; Helen E. D’Arceuil; Laila Zai; Pierre J. Magistretti; Alma Gregory Sorensen; A.J de Crespigny
We used a murine model of transient focal cerebral ischemia to study: 1) in vivo DTI long-term temporal evolution of the apparent diffusion coefficient (ADC) and diffusion fractional anisotropy (FA) at days 4, 10, 15 and 21 after stroke 2) ex vivo distribution of a plasticity-related protein (GAP-43) and its relationship with the ex vivo DTI characteristics of the striato-thalamic pathway (21 days). All animals recovered motor function. In vivo ADC within the infarct was significantly increased after stroke. In the stroke group, GAP-43 expression and FA values were significantly higher in the ipsilateral (IL) striatum and contralateral (CL) hippocampus compared to the shams. DTI tractography showed fiber trajectories connecting the CL striatum to the stroke region, where increased GAP43 and FA were observed and fiber tracts from the CL striatum terminating in the IL hippocampus. Our data demonstrate that DTI changes parallel histological remodeling and recovery of function.
Journal of Biomedical Optics | 2005
Helen E. D’Arceuil; M. P. Hotakainen; Christina H. Liu; George Themelis; A. de Crespigny; Maria Angela Franceschini
The neonatal rabbit brain shows prolonged postnatal development both structurally and physiologically. We use noninvasive near-IR frequency-domain optical spectroscopy (NIRS) and magnetic resonance imaging (MRI) to follow early developmental changes in cerebral oxygenation and anatomy, respectively. Four groups of animals are measured: NIRS in normals, MRI in normals, and both NIRS and MRI with hypoxia-ischemia (HI) (diffusion MRI staging). NIRS and/or MRI are performed from P3 (postnatal day=P) up to P76. NIRS is performed on awake animals with a frequency-domain tissue photometer. Absolute values of oxyhemoglobin concentration ([HbO2]), deoxyhemoglobin concentration ([HbR]), total hemoglobin concentration (HbT), and hemoglobin saturation (StO2) are calculated. The brains of all animals appeared to be maturing as shown in the diffusion tensor MRI. Mean optical coefficients (reduced scattering) remained unchanged in all animals throughout. StO2 increased in all animals (40% at P9 to 65% at P43) and there are no differences between normal, HI controls, and HI brains. The measured increase in StO2 is in agreement with the reported increase in blood flow during the first 2 months of life in rabbits. HbT, which reflects blood volume, peaked at postnatal day P17, as expected since the capillary density increases up to P17 when the microvasculature matures.
Brain Structure & Function | 2017
Leonardo Cerliani; Helen E. D’Arceuil; Michel Thiebaut de Schotten
Through its connectivity with the rest of the brain, a cortical region constrains its function. The advent of MRI methods such as diffusion-weighted imaging tractography allows us to estimate whole-brain anatomical connectivity at multiple seed regions in the same subject. This makes it possible to use data-driven techniques to define the spatial boundaries between adjacent brain regions characterized by sharply different connectivity. This approach has recently been employed to identify connectivity-based subdivisions of the human frontal lobe bearing an apparent similarity with cytoarchitectural subdivisions. However, the spatial relationships between the boundaries of cytoarchitectonic areas and tractography-based subdivisions remain largely hypothetical. In this work we present the first tractography-based parcellation of the frontal lobes in macaques. Diffusion-weighted data for tractography were acquired on ex vivo macaque brain specimens, ruling out the presence of various sources of noise present in acquisitions on living subjects. An unsupervised multivariate technique consistently showed the presence of 11 tractography-driven subdivisions in the frontal lobe across specimens. Comparison with several microstructural atlases suggested a heterogeneous relationship of these subdivisions with cytoarchitectonic areas: caudal frontal, medial and orbitofronal subdivisions featured the most consistent relationship between modalities, while lateral prefrontal subdivisions mostly differed from atlas-based cytoarchitectonic subdivisions. Other subdivisions were reminiscent of the organization of anatomical projections of the caudal motor cortex, as well as of the intrinsic orbitofrontal networks. Hence, although some cytoarchitectural and connectivity-based subdivisions share a similar spatial distribution, they should not necessarily be considered as equivalent. Instead, connectivity-based subdivisions appear to provide complementary information on the spatial organization of anatomical connectivity.
The Open Neuroimaging Journal | 2011
Helen E. D’Arceuil; Alex de Crespigny
Dynamic diffusion MRI was used to visualize hyperacute stroke formation in the brain of a cynomolgus macaque. Under fluoroscopic guidance, a microcatheter was placed into the middle cerebral artery (MCA). The animal was immediately transferred to a 1.5T clinical scanner. Dynamic T2-weighted imaging during bolus injection of Oxygen-17 enriched water through the microcatheter mapped out the territory perfused by the MCA segment. Serial diffusion measurements were made using diffusion-weighted echo-planar imaging, with a temporal resolution of 15 seconds, during injection of a glue embolus into the microcatheter. The apparent diffusion coefficient declined within the lesion core. A wave of transient diffusion decline spread through peripheral uninvolved brain immediately following stroke induction. The propagation speed and pattern is consistent with spreading peri-infarct depolarizations (PID). The detection of PIDs following embolic stroke in a higher nonhuman primate brain supports the hypothesis that spreading depressions may occur following occlusive stroke in humans.
The Open Neuroimaging Journal | 2011
Helen E. D’Arceuil; Alex J de Crespigny
This article reviews imaging approaches applied to the study of stroke in nonhuman primates. We briefly survey the various surgical and minimally invasive experimental stroke models in nonhuman primates, followed by a summary of studies using computed tomography, positron emission tomography and magnetic resonance imaging and spectroscopy to monitor stroke from the hyperacute phase (within minutes of the onset of cerebral ischemia) to the chronic phase (1 month and beyond).
NeuroImage | 2007
Helen E. D’Arceuil; Susan V. Westmoreland; Alex de Crespigny
Journal of Stroke & Cerebrovascular Diseases | 2005
Alex de Crespigny; Helen E. D’Arceuil; Kenneth I. Maynard; Julian He; Dan McAuliffe; Alexander Norbash; Prabhat K. Sehgal; Leena M. Hamberg; George J. Hunter; Ronald F. Budzik; Christopher M. Putman; R. Gilberto Gonzalez