Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alex H. de Vries is active.

Publication


Featured researches published by Alex H. de Vries.


Biochimica et Biophysica Acta | 2009

Lipids on the move : Simulations of membrane pores, domains, stalks and curves

Siewert J. Marrink; Alex H. de Vries; D. Peter Tieleman

In this review we describe the state-of-the-art of computer simulation studies of lipid membranes. We focus on collective lipid-lipid and lipid-protein interactions that trigger deformations of the natural lamellar membrane state, showing that many important biological processes including self-aggregation of membrane components into domains, the formation of non-lamellar phases, and membrane poration and curving, are now amenable to detailed simulation studies.


Journal of Physical Chemistry B | 2009

A Coarse-Grained Model for Polyethylene Oxide and Polyethylene Glycol: Conformation and Hydrodynamics

Hwankyu Lee; Alex H. de Vries; Siewert-Jan Marrink; Richard W. Pastor

A coarse-grained (CG) model for polyethylene oxide (PEO) and polyethylene glycol (PEG) developed within the framework of the MARTINI CG force field (FF) using the distributions of bonds, angles, and dihedrals from the CHARMM all-atom FF is presented. Densities of neat low molecular weight PEO agree with experiment, and the radius of gyration R(g) = 19.1 A +/- 0.7 for 76-mers of PEO (M(w) approximately 3400), in excellent agreement with neutron scattering results for an equal sized PEG. Simulations of 9, 18, 27, 36, 44, 67, 76, 90, 112, 135, and 158-mers of the CG PEO (442 < M(w) < 6998) at low concentration in water show the experimentally observed transition from ideal chain to real chain behavior at 1600 < M(w) < 2000, in excellent agreement with the dependence of experimentally observed hydrodynamic radii of PEG. Hydrodynamic radii of PEO calculated from diffusion coefficients of the higher M(w) PEO also agree well with experiment. R(g) calculated from both all-atom and CG simulations of PEO76 at 21 and 148 mg/cm(3) are found to be nearly equal. This lack of concentration dependence implies that apparent R(g) from scattering experiments at high concentration should not be taken to be the chain dimension. Simulations of PEO grafted to a nonadsorbing surface yield a mushroom to brush transition that is well described by the Alexander-de Gennes formalism.


Journal of Chemical Theory and Computation | 2009

Martini Coarse-Grained Force Field: Extension to Carbohydrates.

Cesar A. López; Andrzej J. Rzepiela; Alex H. de Vries; Lubbert Dijkhuizen; Philippe H. Hünenberger; Siewert J. Marrink

We present an extension of the Martini coarse-grained force field to carbohydrates. The parametrization follows the same philosophy as was used previously for lipids and proteins, focusing on the reproduction of partitioning free energies of small compounds between polar and nonpolar phases. The carbohydrate building blocks considered are the monosaccharides glucose and fructose and the disaccharides sucrose, trehalose, maltose, cellobiose, nigerose, laminarabiose, kojibiose, and sophorose. Bonded parameters for these saccharides are optimized by comparison to conformations sampled with an atomistic force field, in particular with respect to the representation of the most populated rotameric state for the glycosidic bond. Application of the new coarse-grained carbohydrate model to the oligosaccharides amylose and Curdlan shows a preservation of the main structural properties with 3 orders of magnitude more efficient sampling than the atomistic counterpart. Finally, we investigate the cryo- and anhydro-protective effect of glucose and trehalose on a lipid bilayer and find a strong decrease of the melting temperature, in good agreement with both experimental findings and atomistic simulation studies.


Journal of the American Chemical Society | 2014

Lipid organization of the plasma membrane

Helgi I. Ingólfsson; Manuel N. Melo; Floris J. van Eerden; Clement Arnarez; Cesar A. López; Tsjerk A. Wassenaar; Xavier Periole; Alex H. de Vries; D. Peter Tieleman; Siewert J. Marrink

The detailed organization of cellular membranes remains rather elusive. Based on large-scale molecular dynamics simulations, we provide a high-resolution view of the lipid organization of a plasma membrane at an unprecedented level of complexity. Our plasma membrane model consists of 63 different lipid species, combining 14 types of headgroups and 11 types of tails asymmetrically distributed across the two leaflets, closely mimicking an idealized mammalian plasma membrane. We observe an enrichment of cholesterol in the outer leaflet and a general non-ideal lateral mixing of the different lipid species. Transient domains with liquid-ordered character form and disappear on the microsecond time scale. These domains are coupled across the two membrane leaflets. In the outer leaflet, distinct nanodomains consisting of gangliosides are observed. Phosphoinositides show preferential clustering in the inner leaflet. Our data provide a key view on the lateral organization of lipids in one of lifes fundamental structures, the cell membrane.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Lipid packing drives the segregation of transmembrane helices into disordered lipid domains in model membranes

Lars V. Schäfer; Djurre H. de Jong; Andrea Holt; Andrzej J. Rzepiela; Alex H. de Vries; Bert Poolman; J. Antoinette Killian; Siewert J. Marrink

Cell membranes are comprised of multicomponent lipid and protein mixtures that exhibit a complex partitioning behavior. Regions of structural and compositional heterogeneity play a major role in the sorting and self-assembly of proteins, and their clustering into higher-order oligomers. Here, we use computer simulations and optical microscopy to study the sorting of transmembrane helices into the liquid-disordered domains of phase-separated model membranes, irrespective of peptide–lipid hydrophobic mismatch. Free energy calculations show that the enthalpic contribution due to the packing of the lipids drives the lateral sorting of the helices. Hydrophobic mismatch regulates the clustering into either small dynamic or large static aggregates. These results reveal important molecular driving forces for the lateral organization and self-assembly of transmembrane helices in heterogeneous model membranes, with implications for the formation of functional protein complexes in real cells.


Journal of Computational Chemistry | 2010

Reconstruction of atomistic details from coarse-grained structures.

Andrzej J. Rzepiela; Lars V. Schäfer; Nicolae Goga; H. Jelger Risselada; Alex H. de Vries; Siewert J. Marrink

We present an algorithm to reconstruct atomistic structures from their corresponding coarse‐grained (CG) representations and its implementation into the freely available molecular dynamics (MD) program package GROMACS. The central part of the algorithm is a simulated annealing MD simulation in which the CG and atomistic structures are coupled via restraints. A number of examples demonstrate the application of the reconstruction procedure to obtain low‐energy atomistic structural ensembles from their CG counterparts. We reconstructed individual molecules in vacuo (NCQ tripeptide, dipalmitoylphosphatidylcholine, and cholesterol), bulk water, and a WALP transmembrane peptide embedded in a solvated lipid bilayer. The first examples serve to optimize the parameters for the reconstruction procedure, whereas the latter examples illustrate the applicability to condensed‐phase biomolecular systems.


PLOS Computational Biology | 2011

Molecular Mechanism of Cyclodextrin Mediated Cholesterol Extraction

Cesar A. López; Alex H. de Vries; Siewert J. Marrink

The depletion of cholesterol from membranes, mediated by β-cyclodextrin (β-CD) is well known and documented, but the molecular details of this process are largely unknown. Using molecular dynamics simulations, we have been able to study the CD mediated extraction of cholesterol from model membranes, in particular from a pure cholesterol monolayer, at atomic resolution. Our results show that efficient cholesterol extraction depends on the structural distribution of the CDs on the surface of the monolayer. With a suitably oriented dimer, cholesterol is extracted spontaneously on a nanosecond time scale. Additional free energy calculations reveal that the CDs have a strong affinity to bind to the membrane surface, and, by doing so, destabilize the local packing of cholesterol molecules making their extraction favorable. Our results have implications for the interpretation of experimental measurements, and may help in the rational design of efficient CD based nano-carriers.


Journal of Chemical Theory and Computation | 2013

Martini Force Field Parameters for Glycolipids

Cesar A. López; Zofie Sovova; Floris J. van Eerden; Alex H. de Vries; Siewert J. Marrink

We present an extension of the Martini coarse-grained force field to glycolipids. The glycolipids considered here are the glycoglycerolipids monogalactosyldiacylglycerol (MGDG), sulfoquinovosyldiacylglycerol (SQDG), digalactosyldiacylglycerol (DGDG), and phosphatidylinositol (PI) and its phosphorylated forms (PIP, PIP2), as well as the glycosphingolipids galactosylceramide (GCER) and monosialotetrahexosylganglioside (GM1). The parametrization follows the same philosophy as was used previously for lipids, proteins, and carbohydrates focusing on the reproduction of partitioning free energies of small compounds between polar and nonpolar solvents. Bonded parameters are optimized by comparison to lipid conformations sampled with an atomistic force field, in particular with respect to the representation of the most populated states around the glycosidic linkage. Simulations of coarse-grained glycolipid model membranes show good agreement with atomistic simulations as well as experimental data available, especially concerning structural properties such as electron densities, area per lipid, and membrane thickness. Our coarse-grained model opens the way to large scale simulations of biological processes in which glycolipids are important, including recognition, sorting, and clustering of both external and membrane bound proteins.


Scientific Reports | 2013

Computational microscopy of cyclodextrin mediated cholesterol extraction from lipid model membranes

Cesar A. López; Alex H. de Vries; Siewert J. Marrink

Beta-cyclodextrins (β-CDs) can form inclusion complexes with cholesterol, and are commonly used to manipulate cholesterol levels of biomembranes. In this work, we have used multiscale molecular dynamics simulations to provide a detailed view on the interaction between β-CDs and lipid model membranes. We show that cholesterol can be extracted efficiently upon adsorption of β-CD dimers at the membrane/water interface. However, extraction is only observed to occur spontaneously in membranes with high cholesterol levels. Free energy calculations reveal the presence of a kinetic barrier for cholesterol extraction in the case of low cholesterol content. Cholesterol uptake is facilitated in case of (poly)unsaturated lipid membranes, which increases the free energy of the membrane bound state of cholesterol. Comparing lipid/cholesterol compositions typical of liquid-disordered (Ld) and liquid-order (Lo) domains, we furthermore show that cholesterol is preferentially extracted from the disordered regions, in line with recent experimental data.


Biochimica et Biophysica Acta | 2015

Characterization of thylakoid lipid membranes from cyanobacteria and higher plants by molecular dynamics simulations

Floris J. van Eerden; Djurre H. de Jong; Alex H. de Vries; Tsjerk A. Wassenaar; Siewert J. Marrink

The thylakoid membrane is mainly composed of non-common lipids, so called galactolipids. Despite the importance of these lipids for the function of the photosynthetic reaction centers, the molecular organization of these membranes is largely unexplored. Here we use multiscale molecular dynamics simulations to characterize the thylakoid membrane of both cyanobacteria and higher plants. We consider mixtures of up to five different galactolipids plus phosphatidylglycerol to represent these complex membranes. We find that the different lipids generally mix well, although nanoscale heterogeneities are observed especially in case of the plant membrane. The fluidity of the cyanobacterial membrane is markedly reduced compared to the plant membrane, even considering elevated temperatures at which thermophilic cyanobacteria are found. We also find that the plant membrane more readily undergoes a phase transformation to an inverted hexagonal phase. We furthermore characterized the conformation and dynamics of the cofactors plastoquinone and plastoquinol, revealing of the fast flip-flop rates for the non-reduced form. Together, our results provide a molecular view on the dynamical organization of the thylakoid membrane.

Collaboration


Dive into the Alex H. de Vries's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wilfred F. van Gunsteren

École Polytechnique Fédérale de Lausanne

View shared research outputs
Researchain Logo
Decentralizing Knowledge