Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xavier Periole is active.

Publication


Featured researches published by Xavier Periole.


Journal of Chemical Theory and Computation | 2008

The MARTINI Coarse-Grained Force Field: Extension to Proteins

Luca Monticelli; Senthil K. Kandasamy; Xavier Periole; Ronald G. Larson; D. Peter Tieleman; Siewert-Jan Marrink

Many biologically interesting phenomena occur on a time scale that is too long to be studied by atomistic simulations. These phenomena include the dynamics of large proteins and self-assembly of biological materials. Coarse-grained (CG) molecular modeling allows computer simulations to be run on length and time scales that are 2-3 orders of magnitude larger compared to atomistic simulations, providing a bridge between the atomistic and the mesoscopic scale. We developed a new CG model for proteins as an extension of the MARTINI force field. Here, we validate the model for its use in peptide-bilayer systems. In order to validate the model, we calculated the potential of mean force for each amino acid as a function of its distance from the center of a dioleoylphosphatidylcholine (DOPC) lipid bilayer. We then compared amino acid association constants, the partitioning of a series of model pentapeptides, the partitioning and orientation of WALP23 in DOPC lipid bilayers and a series of KALP peptides in dimyristoylphosphatidylcholine and dipalmitoylphosphatidylcholine (DPPC) bilayers. A comparison with results obtained from atomistic models shows good agreement in all of the tests performed. We also performed a systematic investigation of the partitioning of five series of polyalanine-leucine peptides (with different lengths and compositions) in DPPC bilayers. As expected, the fraction of peptides partitioned at the interface increased with decreasing peptide length and decreasing leucine content, demonstrating that the CG model is capable of discriminating partitioning behavior arising from subtle differences in the amino acid composition. Finally, we simulated the concentration-dependent formation of transmembrane pores by magainin, an antimicrobial peptide. In line with atomistic simulation studies, disordered toroidal pores are formed. In conclusion, the model is computationally efficient and effectively reproduces peptide-lipid interactions and the partitioning of amino acids and peptides in lipid bilayers.


Journal of Chemical Theory and Computation | 2013

Improved Parameters for the Martini Coarse-Grained Protein Force Field

Djurre H. de Jong; Gurpreet Singh; W. F. Drew Bennett; Clement Arnarez; Tsjerk A. Wassenaar; Lars V. Schäfer; Xavier Periole; D. Peter Tieleman; Siewert J. Marrink

The Martini coarse-grained force field has been successfully used for simulating a wide range of (bio)molecular systems. Recent progress in our ability to test the model against fully atomistic force fields, however, has revealed some shortcomings. Most notable, phenylalanine and proline were too hydrophobic, and dimers formed by polar residues in apolar solvents did not bind strongly enough. Here, we reparametrize these residues either through reassignment of particle types or by introducing embedded charges. The new parameters are tested with respect to partitioning across a lipid bilayer, membrane binding of Wimley-White peptides, and dimerization free energy in solvents of different polarity. In addition, we improve some of the bonded terms in the Martini protein force field that lead to a more realistic length of α-helices and to improved numerical stability for polyalanine and glycine repeats. The new parameter set is denoted Martini version 2.2.


Journal of Chemical Theory and Computation | 2009

Combining an Elastic Network With a Coarse-Grained Molecular Force Field: Structure, Dynamics, and Intermolecular Recognition

Xavier Periole; Marco Cavalli; Siewert-Jan Marrink; Marco A. Ceruso

Structure-based and physics-based coarse-grained molecular force fields have become attractive approaches to gain mechanistic insight into the function of large biomolecular assemblies. Here, we study how both approaches can be combined into a single representation, that we term ELNEDIN. In this representation an elastic network is used as a structural scaffold to describe and maintain the overall shape of a protein and a physics-based coarse-grained model (MARTINI-2.1) is used to describe both inter- and intramolecular interactions in the system. The results show that when used in molecular dynamics simulations ELNEDIN models can be built so that the resulting structural and dynamical properties of a protein, including its collective motions, are comparable to those obtained using atomistic protein models. We then evaluate the behavior of such models in (1) long, microsecond time-scale, simulations, (2) the modeling of very large macromolecular assemblies, a viral capsid, and (3) the study of a protein-protein association process, the reassembly of the ROP homodimer. The results for this series of tests indicate that ELNEDIN models allow microsecond time-scale molecular dynamics simulations to be carried out readily, that large biological entities such as the viral capsid of the cowpea mosaic virus can be stably modeled as assemblies of independent ELNEDIN models, and that ELNEDIN models show significant promise for modeling protein-protein association processes.


Journal of the American Chemical Society | 2014

Lipid organization of the plasma membrane

Helgi I. Ingólfsson; Manuel N. Melo; Floris J. van Eerden; Clement Arnarez; Cesar A. López; Tsjerk A. Wassenaar; Xavier Periole; Alex H. de Vries; D. Peter Tieleman; Siewert J. Marrink

The detailed organization of cellular membranes remains rather elusive. Based on large-scale molecular dynamics simulations, we provide a high-resolution view of the lipid organization of a plasma membrane at an unprecedented level of complexity. Our plasma membrane model consists of 63 different lipid species, combining 14 types of headgroups and 11 types of tails asymmetrically distributed across the two leaflets, closely mimicking an idealized mammalian plasma membrane. We observe an enrichment of cholesterol in the outer leaflet and a general non-ideal lateral mixing of the different lipid species. Transient domains with liquid-ordered character form and disappear on the microsecond time scale. These domains are coupled across the two membrane leaflets. In the outer leaflet, distinct nanodomains consisting of gangliosides are observed. Phosphoinositides show preferential clustering in the inner leaflet. Our data provide a key view on the lateral organization of lipids in one of lifes fundamental structures, the cell membrane.


Wiley Interdisciplinary Reviews: Computational Molecular Science | 2014

The power of coarse graining in biomolecular simulations

Helgi I. Ingólfsson; Cesar A. López; Jaakko J. Uusitalo; Djurre H. de Jong; Srinivasa M. Gopal; Xavier Periole; Siewert J. Marrink

Computational modeling of biological systems is challenging because of the multitude of spatial and temporal scales involved. Replacing atomistic detail with lower resolution, coarse grained (CG), beads has opened the way to simulate large‐scale biomolecular processes on time scales inaccessible to all‐atom models. We provide an overview of some of the more popular CG models used in biomolecular applications to date, focusing on models that retain chemical specificity. A few state‐of‐the‐art examples of protein folding, membrane protein gating and self‐assembly, DNA hybridization, and modeling of carbohydrate fibers are used to illustrate the power and diversity of current CG modeling.


ACS Chemical Biology | 2014

Phytochemicals Perturb Membranes and Promiscuously Alter Protein Function

Helgi I. Ingólfsson; Pratima Thakur; Karl F. Herold; E. Ashley Hobart; Nicole Ramsey; Xavier Periole; Djurre H. de Jong; Martijn Zwama; Duygu Yilmaz; Katherine Hall; Thorsten Maretzky; Hugh C. Hemmings; Carl P. Blobel; Siewert J. Marrink; Armagan Kocer; Jon T. Sack; Olaf S. Andersen

A wide variety of phytochemicals are consumed for their perceived health benefits. Many of these phytochemicals have been found to alter numerous cell functions, but the mechanisms underlying their biological activity tend to be poorly understood. Phenolic phytochemicals are particularly promiscuous modifiers of membrane protein function, suggesting that some of their actions may be due to a common, membrane bilayer-mediated mechanism. To test whether bilayer perturbation may underlie this diversity of actions, we examined five bioactive phenols reported to have medicinal value: capsaicin from chili peppers, curcumin from turmeric, EGCG from green tea, genistein from soybeans, and resveratrol from grapes. We find that each of these widely consumed phytochemicals alters lipid bilayer properties and the function of diverse membrane proteins. Molecular dynamics simulations show that these phytochemicals modify bilayer properties by localizing to the bilayer/solution interface. Bilayer-modifying propensity was verified using a gramicidin-based assay, and indiscriminate modulation of membrane protein function was demonstrated using four proteins: membrane-anchored metalloproteases, mechanosensitive ion channels, and voltage-dependent potassium and sodium channels. Each protein exhibited similar responses to multiple phytochemicals, consistent with a common, bilayer-mediated mechanism. Our results suggest that many effects of amphiphilic phytochemicals are due to cell membrane perturbations, rather than specific protein binding.


Journal of the American Chemical Society | 2013

Evidence for Cardiolipin Binding Sites on the Membrane-Exposed Surface of the Cytochrome bc(1)

Clement Arnarez; Jean-Pierre Mazat; Juan Elezgaray; Siewert J. Marrink; Xavier Periole

The respiratory chain is located in the inner membrane of mitochondria and produces the major part of the ATP used by a cell. Cardiolipin (CL), a double charged phospholipid composing ~10-20% of the mitochondrial membrane, plays an important role in the function and supramolecular organization of the respiratory chain complexes. We present an extensive set of coarse-grain molecular dynamics (CGMD) simulations aiming at the determination of the preferential interfaces of CLs on the respiratory chain complex III (cytochrome bc(1), CIII). Six CL binding sites are identified, including the CL binding sites known from earlier structural studies and buried into protein cavities. The simulations revealed the importance of two subunits of CIII (G and K in bovine heart) for the structural integrity of these internal CL binding sites. In addition, new binding sites are found on the membrane-exposed protein surface. The reproducibility of these binding sites over two species (bovine heart and yeast mitochondria) points to an important role for the function of the respiratory chain. Interestingly the membrane-exposed CL binding sites are located on the matrix side of CIII in the inner membrane and thus may provide localized sources of proton ready for uptake by CIII. Furthermore, we found that CLs bound to those membrane-exposed sites bridge the proteins during their assembly into supercomplexes by sharing the binding sites.


Scientific Reports | 2013

Identification of cardiolipin binding sites on cytochrome c oxidase at the entrance of proton channels

Clement Arnarez; Siewert J. Marrink; Xavier Periole

The respiratory chain or oxidative phosphorylation system (OxPhos) generates most of the chemical energy (ATP) used by our cells. The cytochrome c oxidase (CcO) is one of three protein complexes of OxPhos building up a proton gradient across the inner mitochondrial membrane, which is ultimately used by the ATP synthase to produce ATP. We present molecular dynamic simulations of CcO in a mimic of the mitochondrial membrane, and identify precise binding sites of cardiolipin (CL, signature phospholipid of mitochondria) on the protein surface. Two of these CL binding sites reveal pathways linking CLs to the entrance of the D and H proton channels across CcO. CLs being able to carry protons our results strongly support an involvement of CLs in the proton delivery machinery to CcO. The ubiquitous nature of CL interactions with the components of the OxPhos suggests that this delivery mechanism might extend to the other respiratory complexes.


Journal of Chemical Physics | 2007

Convergence and sampling efficiency in replica exchange simulations of peptide folding in explicit solvent

Xavier Periole; Alan E. Mark

Replica exchange methods (REMs) are increasingly used to improve sampling in molecular dynamics (MD) simulations of biomolecular systems. However, despite having been shown to be very effective on model systems, the application of REM in complex systems such as for the simulation of protein and peptide folding in explicit solvent has not been objectively tested in detail. Here we present a comparison of conventional MD and temperature replica exchange MD (T-REMD) simulations of a beta-heptapeptide in explicit solvent. This system has previously been shown to undergo reversible folding on the time scales accessible to MD simulation and thus allows a direct one-to-one comparison of efficiency. The primary properties compared are the free energy of folding and the relative populations of different conformers as a function of temperature. It is found that to achieve a similar degree of precision T-REMD simulations starting from a random set of initial configurations were approximately an order of magnitude more computationally efficient than a single 800 ns conventional MD simulation for this system at the lowest temperature investigated (275 K). However, whereas it was found that T-REMD simulations are more than four times more efficient than multiple independent MD simulations at one temperature (300 K) the actual increase in conformation sampling was only twofold. The overall gain in efficiency using REMD resulted primarily from the ordering of different conformational states over temperature, as opposed to a large increase of conformational sampling. It is also shown that in this system exchanges are accepted primarily based on (random) fluctuations within the solvent and are not strongly correlated with the instantaneous peptide conformation raising questions in regard to the efficiency of T-REMD in larger systems.


Proteins | 2008

Refining homology models by combining replica-exchange molecular dynamics and statistical potentials

Jiang Zhu; Hao Fan; Xavier Periole; Barry Honig; Alan E. Mark

A protocol is presented for the global refinement of homology models of proteins. It combines the advantages of temperature‐based replica‐exchange molecular dynamics (REMD) for conformational sampling and the use of statistical potentials for model selection. The protocol was tested using 21 models. Of these 14 were models of 10 small proteins for which high‐resolution crystal structures were available, the remainder were targets of the recent CASPR exercise. It was found that REMD in combination with currently available force fields could sample near‐native conformational states starting from high‐quality homology models. Conformations in which the backbone RMSD of secondary structure elements (SSE‐RMSD) was lower than the starting value by 0.5–1.0 Å were found for 15 out of the 21 cases (average 0.82 Å). Furthermore, when a simple scoring function consisting of two statistical potentials was used to rank the structures, one or more structures with SSE‐RMSD of at least 0.2 Å lower than the starting value was found among the five best ranked structures in 11 out of the 21 cases. The average improvement in SSE‐RMSD for the best models was 0.42 Å. However, none of the scoring functions tested identified the structures with the lowest SSE‐RMSD as the best models although all identified the native conformation as the one with lowest energy. This suggests that while the proposed protocol proved effective for the refinement of high‐quality models of small proteins scoring functions remain one of the major limiting factors in structure refinement. This and other aspects by which the methodology could be further improved are discussed. Proteins 2008.

Collaboration


Dive into the Xavier Periole's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan E. Mark

University of Queensland

View shared research outputs
Researchain Logo
Decentralizing Knowledge