Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alex Manicardi is active.

Publication


Featured researches published by Alex Manicardi.


Biochemical Pharmacology | 2011

Targeting microRNAs involved in human diseases: a novel approach for modification of gene expression and drug development.

Roberto Gambari; Enrica Fabbri; Monica Borgatti; Ilaria Lampronti; Alessia Finotti; Eleonora Brognara; Nicoletta Bianchi; Alex Manicardi; Rosangela Marchelli; Roberto Corradini

The identification of all epigenetic modifications (i.e. DNA methylation, histone modifications and expression of noncoding RNAs such as microRNAs) involved in gene regulation is one of the major steps forward for understanding human biology in both normal and pathological conditions and for development of novel drugs. In this context, microRNAs play a pivotal role. This review article focuses on the involvement of microRNAs in the regulation of gene expression, on the possible role of microRNAs in the onset and development of human pathologies, and on the pharmacological alteration of the biological activity of microRNAs. RNA and DNA analogs, which can selectively target microRNAs using Watson-Crick base pairing schemes, provide a rational and efficient way to modulate gene expression. These compounds, termed antago-miR or anti-miR have been described in many examples in the recent literature and have proved to be able to perform regulatory as well as therapeutic functions. Among these, a still not fully exploited class is that of peptide nucleic acids (PNAs), promising tools for the inhibition of miRNA activity, with important applications in gene therapy and in drug development. PNAs targeting miR-122, miR-155 and miR-210 have already been developed and their biological effects studied both in vitro and in vivo.


Current Topics in Medicinal Chemistry | 2011

Peptide Nucleic Acids with a Structurally Biased Backbone. Updated Review and Emerging Challenges

Roberto Corradini; Stefano Sforza; Tullia Tedeschi; Filbert Totsingan; Alex Manicardi; Rosangela Marchelli

Peptide nucleic acids (PNAs) are polyamidic oligonucleotide analogues which have been described for the first time almost twenty years ago and were immediately found to be excellent tool in binding DNA and RNA for diagnostics and gene regulation. Their use as therapeutic agents have been proposed since early studies and recent advancements in cellular delivery systems and in the so called anti-gene strategy make them good candidates for drug development. The search for new chemical modification of PNAs is a very active field of research and new structures are continuously proposed. This review focuses on the modification of the PNA backbone, and their possible use in medicinal chemistry with an update of this topics in view of emerging new trends and opening of new possibilities In particular two classes of structurally biased PNAs are described in details: i) PNAs with acyclic structures and their helical preference, which is regulated by stereochemistry and ii) cyclic PNAs with preorganized structures, whose performances depend both on stereochemistry and on conformational constraints. The properties of these compounds are discussed in terms of affinity for nucleic acids, and several examples of their use in cellular or animal systems are presented , with exciting new fields of research such as microRNA (miR) targeting and gene repair.


ChemMedChem | 2011

Modulation of the biological activity of microRNA-210 with peptide nucleic acids (PNAs).

Enrica Fabbri; Alex Manicardi; Tullia Tedeschi; Stefano Sforza; Nicoletta Bianchi; Eleonora Brognara; Alessia Finotti; Giulia Breveglieri; Monica Borgatti; Roberto Corradini; Rosangela Marchelli; Roberto Gambari

Herein we describe the activity of a peptide nucleic acid (PNA) that targets microRNA‐210 (miR‐210), which is associated with hypoxia and is modulated during erythroid differentiation. PNAs directed against miR‐210 were designed to bind with high affinity to the target RNA strand and to undergo efficient uptake in target cells. A polyarginine–PNA conjugate directed against miR‐210 (Rpep‐PNA‐a210) showed both very high affinity for RNA and efficient uptake into target cells without the need for transfection reagents. An unmodified PNA of the same sequence displayed the ability to bind RNA, but cellular uptake was very poor. Consistent with this, only Rpep‐PNA‐a210 strongly inhibited miR‐210 activity, as evaluated by assays on undifferentiated K562 cells and on cells treated with mithramycin, which was found to induce erythroid differentiation and miR‐210 overexpression. Targeting miR‐210 by Rpep‐PNA‐a210 resulted in: 1) a decrease in miR‐210 levels as measured by RT‐PCR, 2) up‐regulation of raptor mRNA, 3) a decrease in γ‐globin mRNA, and 4) decreased expression of differentiated functions (i.e., proportion of benzidine‐positive cells, content of embryo‐fetal hemoglobins). The efficient delivery of anti‐miR PNAs through a suitable peptide carrier (Rpep‐PNA‐a210) leads to the inhibition of miR‐210 activity, altering the expression of miR‐210‐regulated erythroid functions.


International Journal of Oncology | 2012

Peptide nucleic acids targeting miR-221 modulate p27Kip1 expression in breast cancer MDA-MB-231 cells.

Eleonora Brognara; Enrica Fabbri; Fabio Aimi; Alex Manicardi; Nicoletta Bianchi; Alessia Finotti; Giulia Breveglieri; Monica Borgatti; Roberto Corradini; Rosangela Marchelli; Roberto Gambari

The activity of a peptide nucleic acid (PNA) targeting cancer-associated microRNA-221 is described. PNAs against miR-221 were designed in order to bind very efficiently to the target RNA strand and to undergo efficient uptake in the cells. A polyarginine-PNA conjugate targeted against miR-221 (Rpep-PNA-a221) showed both very high affinity for RNA and efficient cellular uptake without the addition of transfection reagents. Unmodified PNA with the same sequence displayed RNA binding, but cellular uptake was very poor. Consistently, only Rpep-PNA-a221 strongly inhibited miR-221. Targeting miR-221 by PNA resulted in i) lowering of the hybridization levels of miR-221 measured by RT-qPCR, ii) upregulation of p27Kip1 gene expression, measured by RT-qPCR and western blot analysis. The major conclusion of this study is that efficient delivery of anti‑miR PNA through a suitable peptide carrier (Rpep‑PNA-a221) leads to inhibition of miR-221 activity, altering the expression of miR-221-regulated functions in breast cancer cells.


Biosensors and Bioelectronics | 2015

Detection of unamplified genomic DNA by a PNA-based microstructured optical fiber (MOF) Bragg-grating optofluidic system.

Alessandro Bertucci; Alex Manicardi; Alessandro Candiani; Sara Giannetti; Annamaria Cucinotta; Giuseppe Spoto; Maria Konstantaki; Stavros Pissadakis; Stefano Selleri; Roberto Corradini

Microstructured optical fibers containing microchannels and Bragg grating inscribed were internally functionalized with a peptide nucleic acid (PNA) probe specific for a gene tract of the genetically modified Roundup Ready soy. These fibers were used as an optofluidic device for the detection of DNA by measuring the shift in the wavelength of the reflected IR light. Enhancement of optical read-out was obtained using streptavidin coated gold-nanoparticles interacting with the genomic DNA captured in the fiber channels (0%, 0.1%, 1% and 10% RR-Soy), enabling to achieve statistically significant, label-free, and amplification-free detection of target DNA in low concentrations, low percentages, and very low sample volumes. Computer simulations of the fiber optics based on the finite element method (FEM) were consistent with the formation of a layer of organic material with an average thickness of 39 nm for the highest percentage (10% RR soy) analysed.


Journal of Biomedical Optics | 2013

Label-free DNA biosensor based on a peptide nucleic acid-functionalized microstructured optical fiber-Bragg grating

Alessandro Candiani; Alessandro Bertucci; Sara Giannetti; Maria Konstantaki; Alex Manicardi; Stavros Pissadakis; Annamaria Cucinotta; Roberto Corradini; Stefano Selleri

Abstract. We describe a novel sensing approach based on a functionalized microstructured optical fiber-Bragg grating for specific DNA target sequences detection. The inner surface of a microstructured fiber, where a Bragg grating was previously inscribed, has been functionalized by covalent linking of a peptide nucleic acid probe targeting a DNA sequence bearing a single point mutation implicated in cystic fibrosis (CF) disease. A solution of an oligonucleotide (ON) corresponding to a tract of the CF gene containing the mutated DNA has been infiltrated inside the fiber capillaries and allowed to hybridize to the fiber surface according to the Watson-Crick pairing. In order to achieve signal amplification, ON-functionalized gold nanoparticles were then infiltrated and used in a sandwich-like assay. Experimental measurements show a clear shift of the reflected high order mode of a Bragg grating for a 100 nM DNA solution, and fluorescence measurements have confirmed the successful hybridization. Several experiments have been carried out on the same fiber using the identical concentration, showing the same modulation trend, suggesting the possibility of the reuse of the sensor. Measurements have also been made using a 100 nM mismatched DNA solution, containing a single nucleotide mutation and corresponding to the wild-type gene, and the results demonstrate the high selectivity of the sensor.


ChemBioChem | 2012

Cellular Uptakes, Biostabilities and Anti‐miR‐210 Activities of Chiral Arginine‐PNAs in Leukaemic K562 Cells

Alex Manicardi; Enrica Fabbri; Tullia Tedeschi; Stefano Sforza; Nicoletta Bianchi; Eleonora Brognara; Roberto Gambari; Rosangela Marchelli; Roberto Corradini

A series of 18‐mer peptide nucleic acids (PNAs) targeted against micro‐RNA miR‐210 was synthesised and tested in a cellular system. Unmodified PNAs, R8‐conjugated PNAs and modified PNAs containing eight arginine residues on the backbone, either as C2‐modified (R) or C5‐modified (S) monomers, all with the same sequence, were compared. Two different models were used for the modified PNAs: one with alternated chiral and achiral monomers and one with a stretch of chiral monomers at the N terminus. The melting temperatures of these derivatives were found to be extremely high and 5 M urea was used to assess differences between the different structures. FACS analysis and qRT‐PCR on K562 chronic myelogenous leukaemic cells indicated that arginine‐conjugated and backbone‐modified PNAs display good cellular uptake, with best performances for the C2‐modified series. Resistance to enzymatic degradation was found to be higher for the backbone‐modified PNAs, thus enhancing the advantage of using these derivatives rather than conjugated PNAs in the cells in serum, and this effect is magnified in the presence of peptidases such as trypsin. Inhibition of miR‐210 activity led to changes in the erythroid differentiation pathway, which were more evident in mithramycin‐treated cells. Interestingly, the anti‐miR activities differed with use of different PNAs, thus suggesting a role of the substituents not only in the cellular uptake, but also in the mechanism of miR recognition and inactivation. This is the first report relating to the use of backbone‐modified PNAs as anti‐miR agents. The results clearly indicate that backbone‐modified PNAs are good candidates for the development of very efficient drugs based on anti‐miR activity, due to their enhanced bioavailabilities, and that overall anti‐miR performance is a combination of cellular uptake and RNA binding.


Small | 2015

Combined Delivery of Temozolomide and Anti-miR221 PNA Using Mesoporous Silica Nanoparticles Induces Apoptosis in Resistant Glioma Cells.

Alessandro Bertucci; Eko Adi Prasetyanto; Dedy Septiadi; Alex Manicardi; Eleonora Brognara; Roberto Gambari; Roberto Corradini; Luisa De Cola

Mesoporous silica nanoparticles (MSNPs), 100 nm in size, incorporating a Cy5 fluorophore within the silica framework, are synthesized and loaded with the anti-cancer drug temozolomide (TMZ), used in the treatment of gliomas. The surface of the particles is then decorated, using electrostatic interactions, with a polyarginine-peptide nucleic acid (R8-PNA) conjugate targeting the miR221 microRNA. The multi-functional nanosystem thus obtained is rapidly internalized into glioma C6 or T98G cells. The anti-miR activity of the PNA is retained, as confirmed by reverse transcription polymerase chain reaction (RT-PCR) measurements and induction of apoptosis is observed in temozolomide-resistant cell lines. The TMZ-loaded MSNPs show an enhanced pro-apoptotic effect, and the combined effect of TMZ and R8-PNA in the MSNPs shows the most effective induction of apoptosis (70.9% of apoptotic cells) thus far achieved in the temozolomide-resistant T98G cell line.


Epigenomics | 2011

miRNA therapeutics: delivery and biological activity of peptide nucleic acids targeting miRNAs.

Enrica Fabbri; Eleonora Brognara; Monica Borgatti; Ilaria Lampronti; Alessia Finotti; Nicoletta Bianchi; Stefano Sforza; Tullia Tedeschi; Alex Manicardi; Rosangela Marchelli; Roberto Corradini; Roberto Gambari

Peptide nucleic acids (PNAs) are DNA/RNA mimics extensively used for pharmacological regulation of gene expression in a variety of cellular and molecular systems, and they have been described as excellent candidates for antisense and antigene therapies. At present, very few data are available on the use of PNAs as molecules targeting miRNAs. miRNAs are a family of small nc RNAs that regulate gene expression by sequence-selective targeting of mRNAs, leading to a translational repression or mRNA degradation to the control of highly regulated biological functions, such as differentiation, cell cycle and apoptosis. The aim of this article is to present the state-of-the-art concerning the possible use of PNAs to target miRNAs and modify their biological metabolism within the cells. The results present in the literature allow to propose PNA-based molecules as very promising reagents to modulate the biological activity of miRNAs. In consideration of the involvement of miRNAs in human pathologies, PNA-mediated targeting of miRNAs has been proposed as a potential novel therapeutic approach.


Advanced Healthcare Materials | 2014

Intracellular Delivery of Peptide Nucleic Acid and Organic Molecules Using Zeolite-L Nanocrystals

Alessandro Bertucci; Henning Lülf; Dedy Septiadi; Alex Manicardi; Roberto Corradini; Luisa De Cola

The design and synthesis of smart nanomaterials can provide interesting potential applications for biomedical purposes from bioimaging to drug delivery. Manufacturing multifunctional systems in a way to carry bioactive molecules, like peptide nucleic acids able to recognize specific targets in living cells, represents an achievement towards the development of highly selective tools for both diagnosis and therapeutics. This work describes a very first example of the use of zeolite nanocrystals as multifunctional nanocarriers to deliver simultaneously PNA and organic molecules into living cells. Zeolite-L nanocrystals are functionalized by covalently attaching the PNA probes onto the surface, while the channel system is filled with fluorescent guest molecules. The cellular uptake of the PNA/Zeolite-L hybrid material is then significantly increased by coating the whole system with a thin layer of biodegradable poly-L-lysine. The delivery of DAPI as a model drug molecule, inserted into the zeolite pores, is also demonstrated to occur in the cells, proving the multifunctional ability of the system. Using this zeolite nanosystem carrying PNA probes designed to target specific RNA sequences of interest in living cells could open new possibilities for theranostic and gene therapy applications.

Collaboration


Dive into the Alex Manicardi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roberto Gambari

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge