Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eleonora Brognara is active.

Publication


Featured researches published by Eleonora Brognara.


Biochemical Pharmacology | 2011

Targeting microRNAs involved in human diseases: a novel approach for modification of gene expression and drug development.

Roberto Gambari; Enrica Fabbri; Monica Borgatti; Ilaria Lampronti; Alessia Finotti; Eleonora Brognara; Nicoletta Bianchi; Alex Manicardi; Rosangela Marchelli; Roberto Corradini

The identification of all epigenetic modifications (i.e. DNA methylation, histone modifications and expression of noncoding RNAs such as microRNAs) involved in gene regulation is one of the major steps forward for understanding human biology in both normal and pathological conditions and for development of novel drugs. In this context, microRNAs play a pivotal role. This review article focuses on the involvement of microRNAs in the regulation of gene expression, on the possible role of microRNAs in the onset and development of human pathologies, and on the pharmacological alteration of the biological activity of microRNAs. RNA and DNA analogs, which can selectively target microRNAs using Watson-Crick base pairing schemes, provide a rational and efficient way to modulate gene expression. These compounds, termed antago-miR or anti-miR have been described in many examples in the recent literature and have proved to be able to perform regulatory as well as therapeutic functions. Among these, a still not fully exploited class is that of peptide nucleic acids (PNAs), promising tools for the inhibition of miRNA activity, with important applications in gene therapy and in drug development. PNAs targeting miR-122, miR-155 and miR-210 have already been developed and their biological effects studied both in vitro and in vivo.


ChemMedChem | 2011

Modulation of the biological activity of microRNA-210 with peptide nucleic acids (PNAs).

Enrica Fabbri; Alex Manicardi; Tullia Tedeschi; Stefano Sforza; Nicoletta Bianchi; Eleonora Brognara; Alessia Finotti; Giulia Breveglieri; Monica Borgatti; Roberto Corradini; Rosangela Marchelli; Roberto Gambari

Herein we describe the activity of a peptide nucleic acid (PNA) that targets microRNA‐210 (miR‐210), which is associated with hypoxia and is modulated during erythroid differentiation. PNAs directed against miR‐210 were designed to bind with high affinity to the target RNA strand and to undergo efficient uptake in target cells. A polyarginine–PNA conjugate directed against miR‐210 (Rpep‐PNA‐a210) showed both very high affinity for RNA and efficient uptake into target cells without the need for transfection reagents. An unmodified PNA of the same sequence displayed the ability to bind RNA, but cellular uptake was very poor. Consistent with this, only Rpep‐PNA‐a210 strongly inhibited miR‐210 activity, as evaluated by assays on undifferentiated K562 cells and on cells treated with mithramycin, which was found to induce erythroid differentiation and miR‐210 overexpression. Targeting miR‐210 by Rpep‐PNA‐a210 resulted in: 1) a decrease in miR‐210 levels as measured by RT‐PCR, 2) up‐regulation of raptor mRNA, 3) a decrease in γ‐globin mRNA, and 4) decreased expression of differentiated functions (i.e., proportion of benzidine‐positive cells, content of embryo‐fetal hemoglobins). The efficient delivery of anti‐miR PNAs through a suitable peptide carrier (Rpep‐PNA‐a210) leads to the inhibition of miR‐210 activity, altering the expression of miR‐210‐regulated erythroid functions.


International Journal of Oncology | 2012

Peptide nucleic acids targeting miR-221 modulate p27Kip1 expression in breast cancer MDA-MB-231 cells.

Eleonora Brognara; Enrica Fabbri; Fabio Aimi; Alex Manicardi; Nicoletta Bianchi; Alessia Finotti; Giulia Breveglieri; Monica Borgatti; Roberto Corradini; Rosangela Marchelli; Roberto Gambari

The activity of a peptide nucleic acid (PNA) targeting cancer-associated microRNA-221 is described. PNAs against miR-221 were designed in order to bind very efficiently to the target RNA strand and to undergo efficient uptake in the cells. A polyarginine-PNA conjugate targeted against miR-221 (Rpep-PNA-a221) showed both very high affinity for RNA and efficient cellular uptake without the addition of transfection reagents. Unmodified PNA with the same sequence displayed RNA binding, but cellular uptake was very poor. Consistently, only Rpep-PNA-a221 strongly inhibited miR-221. Targeting miR-221 by PNA resulted in i) lowering of the hybridization levels of miR-221 measured by RT-qPCR, ii) upregulation of p27Kip1 gene expression, measured by RT-qPCR and western blot analysis. The major conclusion of this study is that efficient delivery of anti‑miR PNA through a suitable peptide carrier (Rpep‑PNA-a221) leads to inhibition of miR-221 activity, altering the expression of miR-221-regulated functions in breast cancer cells.


International Immunopharmacology | 2012

Corilagin is a potent inhibitor of NF-kappaB activity and downregulates TNF-alpha induced expression of IL-8 gene in cystic fibrosis IB3-1 cells

Roberto Gambari; Monica Borgatti; Ilaria Lampronti; Enrica Fabbri; Eleonora Brognara; Nicoletta Bianchi; Laura Piccagli; Marcus Chun-Wah Yuen; Chi-Wai Kan; Desmond Kwok-Po Hau; Wang-Fun Fong; Wai-Yeung Wong; Raymond Siu Ming Wong; Chung-Hin Chui

Corilagin (beta-1-O-galloyl-3,6-(R)-hexahydroxydiphenoyl-d-glucose), a gallotannin identified in several plants, including Phyllanthus urinaria, has been shown to exhibit versatile medicinal activities. As far as possible anti-inflammatory effects of corilagin, only few reports are available, and the potential use of corilagin as possible therapeutic molecule for cystic fibrosis has not been evaluated. In the present paper we report experiments aimed at determining the activity of corilagin on nuclear factor kappaB (NF-kappaB) binding to DNA target and on the expression of the major pro-inflammatory gene involved in cystic fibrosis, interleukin-8 (IL-8). Both IL-8 mRNA content and IL-8 protein secretion were analyzed in cystic fibrosis bronchial IB3-1 cells stimulated by tumor necrosis factor-alpha (TNF-alpha), one of the most potent pro-inflammatory agents. The data obtained demonstrate that corilagin binds to NF-kappaB, inhibits NF-kappaB/DNA interactions and affects IL-8 gene expression in TNF-alpha treated IB3-1 cells. In addition, corilagin inhibits TNF-alpha induced secretion of MCP-1 and RANTES, exhibiting low or no effect on the release of G-CSF, IL-6 and VEGF. Therefore, corilagin might be of interest for experimental anti-inflammatory therapy of cystic fibrosis.


International Journal of Oncology | 2016

Targeting oncomiRNAs and mimicking tumor suppressor miRNAs: Νew trends in the development of miRNA therapeutic strategies in oncology (Review)

Roberto Gambari; Eleonora Brognara; Demetrios A. Spandidos; Enrica Fabbri

MicroRNA (miRNA or miR) therapeutics in cancer are based on targeting or mimicking miRNAs involved in cancer onset, progression, angiogenesis, epithelial-mesenchymal transition and metastasis. Several studies conclusively have demonstrated that miRNAs are deeply involved in tumor onset and progression, either behaving as tumor-promoting miRNAs (oncomiRNAs and metastamiRNAs) or as tumor suppressor miRNAs. This review focuses on the most promising examples potentially leading to the development of anticancer, miRNA-based therapeutic protocols. The inhibition of miRNA activity can be readily achieved by the use of miRNA inhibitors and oligomers, including RNA, DNA and DNA analogues (miRNA antisense therapy), small molecule inhibitors, miRNA sponges or through miRNA masking. On the contrary, the enhancement of miRNA function (miRNA replacement therapy) can be achieved by the use of modified miRNA mimetics, such as plasmid or lentiviral vectors carrying miRNA sequences. Combination strategies have been recently developed based on the observation that i) the combined administration of different antagomiR molecules induces greater antitumor effects and ii) some anti-miR molecules can sensitize drug-resistant tumor cell lines to therapeutic drugs. In this review, we discuss two additional issues: i) the combination of miRNA replacement therapy with drug administration and ii) the combination of antagomiR and miRNA replacement therapy. One of the solid results emerging from different independent studies is that miRNA replacement therapy can enhance the antitumor effects of the antitumor drugs. The second important conclusion of the reviewed studies is that the combination of anti-miRNA and miRNA replacement strategies may lead to excellent results, in terms of antitumor effects.


Molecules | 2012

trans-Resveratrol in Nutraceuticals: Issues in Retail Quality and Effectiveness

Damiano Rossi; Alessandra Guerrini; Renato Bruni; Eleonora Brognara; Monica Borgatti; Roberto Gambari; Silvia Maietti; Gianni Sacchetti

Fourteen brands of resveratrol-containing nutraceuticals were evaluated in order to verify their actual resveratrol content and to control if their health-promoting properties are related to manufacturing quality. Products included pure resveratrol capsules or multi-ingredient formulations with standardized amounts of resveratrol and other phytochemicals. Samples were analyzed for total trans-resveratrol, flavonoids, procyanidin, polyphenol content and the results were compared with the content declared on-label. Only five out of 14 brands had near label values, compliant with Good Manufacturing Practices (GMP) requirements (95–105% content of active constituent), four products were slightly out of this range (83–111%) and three were in the 8–64% range. Two samples were below the limit of detection. The greater the difference between actual and labeled resveratrol content, the lower was the antioxidant and antiproliferative activity strength. Dietary supplements containing pure trans-resveratrol exhibited a greater induction of differentiation towards human leukemic K562 cells when compared to multicomponent products. Great differences currently exist among resveratrol food supplements commercially available and GMP-grade quality should not be taken for granted. On the other side, dosages suggested by most “pure”, “high-dosage” supplements may allow a supplementation level adequate to obtain some of the purported health benefits.


ChemBioChem | 2012

Cellular Uptakes, Biostabilities and Anti‐miR‐210 Activities of Chiral Arginine‐PNAs in Leukaemic K562 Cells

Alex Manicardi; Enrica Fabbri; Tullia Tedeschi; Stefano Sforza; Nicoletta Bianchi; Eleonora Brognara; Roberto Gambari; Rosangela Marchelli; Roberto Corradini

A series of 18‐mer peptide nucleic acids (PNAs) targeted against micro‐RNA miR‐210 was synthesised and tested in a cellular system. Unmodified PNAs, R8‐conjugated PNAs and modified PNAs containing eight arginine residues on the backbone, either as C2‐modified (R) or C5‐modified (S) monomers, all with the same sequence, were compared. Two different models were used for the modified PNAs: one with alternated chiral and achiral monomers and one with a stretch of chiral monomers at the N terminus. The melting temperatures of these derivatives were found to be extremely high and 5 M urea was used to assess differences between the different structures. FACS analysis and qRT‐PCR on K562 chronic myelogenous leukaemic cells indicated that arginine‐conjugated and backbone‐modified PNAs display good cellular uptake, with best performances for the C2‐modified series. Resistance to enzymatic degradation was found to be higher for the backbone‐modified PNAs, thus enhancing the advantage of using these derivatives rather than conjugated PNAs in the cells in serum, and this effect is magnified in the presence of peptidases such as trypsin. Inhibition of miR‐210 activity led to changes in the erythroid differentiation pathway, which were more evident in mithramycin‐treated cells. Interestingly, the anti‐miR activities differed with use of different PNAs, thus suggesting a role of the substituents not only in the cellular uptake, but also in the mechanism of miR recognition and inactivation. This is the first report relating to the use of backbone‐modified PNAs as anti‐miR agents. The results clearly indicate that backbone‐modified PNAs are good candidates for the development of very efficient drugs based on anti‐miR activity, due to their enhanced bioavailabilities, and that overall anti‐miR performance is a combination of cellular uptake and RNA binding.


Small | 2015

Combined Delivery of Temozolomide and Anti-miR221 PNA Using Mesoporous Silica Nanoparticles Induces Apoptosis in Resistant Glioma Cells.

Alessandro Bertucci; Eko Adi Prasetyanto; Dedy Septiadi; Alex Manicardi; Eleonora Brognara; Roberto Gambari; Roberto Corradini; Luisa De Cola

Mesoporous silica nanoparticles (MSNPs), 100 nm in size, incorporating a Cy5 fluorophore within the silica framework, are synthesized and loaded with the anti-cancer drug temozolomide (TMZ), used in the treatment of gliomas. The surface of the particles is then decorated, using electrostatic interactions, with a polyarginine-peptide nucleic acid (R8-PNA) conjugate targeting the miR221 microRNA. The multi-functional nanosystem thus obtained is rapidly internalized into glioma C6 or T98G cells. The anti-miR activity of the PNA is retained, as confirmed by reverse transcription polymerase chain reaction (RT-PCR) measurements and induction of apoptosis is observed in temozolomide-resistant cell lines. The TMZ-loaded MSNPs show an enhanced pro-apoptotic effect, and the combined effect of TMZ and R8-PNA in the MSNPs shows the most effective induction of apoptosis (70.9% of apoptotic cells) thus far achieved in the temozolomide-resistant T98G cell line.


International Journal of Molecular Medicine | 2012

Resveratrol: Antioxidant activity and induction of fetal hemoglobin in erythroid cells from normal donors and β-thalassemia patients

Eitan Fibach; Eugenia Prus; Nicoletta Bianchi; Cristina Zuccato; Giulia Breveglieri; Francesca Salvatori; Alessia Finotti; Michele Lipucci di Paola; Eleonora Brognara; Ilaria Lampronti; Monica Borgatti; Roberto Gambari

Thalassemia and sickle-cell anemia (SCA) present a major public health problem in countries where the number of carriers and affected individuals is high. As a result of the abnormalities in hemoglobin production, cells of thalassemia and SCA patients exhibit oxidative stress, which ultimately is responsible for the chronic anemia observed. Therefore, identification of compounds exhibiting both antioxidant and hemoglobin-inducing activities is highly needed. Our results demonstrate resveratrol to be such a compound. This was shown both in the human K562 cell line, as well as in erythroid precursors derived from normal donors and β-thalassemia patients. Resveratrol was shown to exhibit antioxidant activity and to stimulate the expression of the γ-globin genes and the accumulation of fetal hemoglobin (HbF). To the best of our knowledge, this is the first report pointing to such a double effect of resveratrol. Since this natural product is already marketed as an antioxidant, future investigations should concentrate on demonstrating its potential to augment HbF production in experimental animal models (e.g., thalassemia and SCA mice) as well as in patients. We believe that the potential of clinical use of resveratrol as an antioxidant and HbF stimulator may offer a simple and inexpensive treatment to patients.


Epigenomics | 2011

miRNA therapeutics: delivery and biological activity of peptide nucleic acids targeting miRNAs.

Enrica Fabbri; Eleonora Brognara; Monica Borgatti; Ilaria Lampronti; Alessia Finotti; Nicoletta Bianchi; Stefano Sforza; Tullia Tedeschi; Alex Manicardi; Rosangela Marchelli; Roberto Corradini; Roberto Gambari

Peptide nucleic acids (PNAs) are DNA/RNA mimics extensively used for pharmacological regulation of gene expression in a variety of cellular and molecular systems, and they have been described as excellent candidates for antisense and antigene therapies. At present, very few data are available on the use of PNAs as molecules targeting miRNAs. miRNAs are a family of small nc RNAs that regulate gene expression by sequence-selective targeting of mRNAs, leading to a translational repression or mRNA degradation to the control of highly regulated biological functions, such as differentiation, cell cycle and apoptosis. The aim of this article is to present the state-of-the-art concerning the possible use of PNAs to target miRNAs and modify their biological metabolism within the cells. The results present in the literature allow to propose PNA-based molecules as very promising reagents to modulate the biological activity of miRNAs. In consideration of the involvement of miRNAs in human pathologies, PNA-mediated targeting of miRNAs has been proposed as a potential novel therapeutic approach.

Collaboration


Dive into the Eleonora Brognara's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge