Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alex Mann is active.

Publication


Featured researches published by Alex Mann.


American Journal of Respiratory and Critical Care Medicine | 2010

Viral Load Drives Disease in Humans Experimentally Infected with Respiratory Syncytial Virus

John P. DeVincenzo; Tom Wilkinson; Akshay Vaishnaw; Jeff Cehelsky; Rachel Meyers; Saraswathy V. Nochur; Lisa Harrison; Patricia Meeking; Alex Mann; Elizabeth Moane; John Oxford; Rajat Pareek; Ryves Moore; Ed Walsh; Robert Studholme; Preston Dorsett; Rene Alvarez; Robert Lambkin-Williams

RATIONALE Respiratory syncytial virus (RSV) is the leading cause of childhood lower respiratory infection, yet viable therapies are lacking. Two major challenges have stalled antiviral development: ethical difficulties in performing pediatric proof-of-concept studies and the prevailing concept that the disease is immune-mediated rather than being driven by viral load. OBJECTIVES The development of a human experimental wild-type RSV infection model to address these challenges. METHODS Healthy volunteers (n = 35), in five cohorts, received increasing quantities (3.0-5.4 log plaque-forming units/person) of wild-type RSV-A intranasally. MEASUREMENTS AND MAIN RESULTS Overall, 77% of volunteers consistently shed virus. Infection rate, viral loads, disease severity, and safety were similar between cohorts and were unrelated to quantity of RSV received. Symptoms began near the time of initial viral detection, peaked in severity near when viral load peaked, and subsided as viral loads (measured by real-time polymerase chain reaction) slowly declined. Viral loads correlated significantly with intranasal proinflammatory cytokine concentrations (IL-6 and IL-8). Increased viral load correlated consistently with increases in multiple different disease measurements (symptoms, physical examination, and amount of nasal mucus). CONCLUSIONS Viral load appears to drive disease manifestations in humans with RSV infection. The observed parallel viral and disease kinetics support a potential clinical benefit of RSV antivirals. This reproducible model facilitates the development of future RSV therapeutics.


Antiviral Therapy | 2013

Comparing influenza and RSV viral and disease dynamics in experimentally infected adults predicts clinical effectiveness of RSV antivirals.

Bindiya Bagga; Christopher W. Woods; Timothy Veldman; Anthony Gilbert; Alex Mann; Ganesh Balaratnam; Robert Lambkin-Williams; John Oxford; Micah T. McClain; Tom Wilkinson; Brad Nicholson; Geoffrey S. Ginsburg; John P. DeVincenzo

BACKGROUND Antivirals reduce influenza viral replication and illness measures, particularly if initiated early, within 48 h of symptom onset. Whether experimental antivirals that reduce respiratory syncytial virus (RSV) load would also reduce disease is unknown. This study compares viral and disease dynamics in humans experimentally infected with influenza or RSV. METHODS Clinical strains of RSV-A and influenza A were inoculated intranasally into 20 and 17 healthy volunteers, respectively, on day 0. Symptom scores and nasal washes were performed twice daily, and daily mucus weights were collected. Viral loads in nasal washes were quantified by culture (plaque assay in HEp-2 cells for RSV and by end point dilution in Madin-Darby canine kidney cells for influenza). RESULTS After influenza inoculation, influenza viral load and illness markers increased simultaneously until day 2. Within individual subjects, peak influenza load occurred 0.4 days (95% CI -0.4, 1.3) before peak symptoms. Influenza viral load and disease declined thereafter. After RSV inoculation, a longer incubation period occurred prior to viral detection and symptom onset. RSV load and disease increased together until day 5. Within individual subjects, peak RSV loads occurred 0.2 days (95% CI -0.7, 1.05) before peak symptoms, after which both illness measures and viral load declined together. CONCLUSIONS Viral and disease dynamics in experimental human infections suggest that reducing RSV load, if timed similarly to clinically-effective influenza antivirals, might be expected to have a similar or greater window of opportunity for reducing clinical RSV disease.


Vaccine | 2010

Immunogenicity, protective efficacy and mechanism of novel CCS adjuvanted influenza vaccine.

Orli Even-Or; Sarit Samira; Eli Rochlin; Shobana Balasingam; Alex Mann; Rob Lambkin-Williams; Jack Spira; Itzhak Goldwaser; Ronald Ellis; Yechezkel Barenholz

We optimized the immunogenicity of adjuvanted seasonal influenza vaccine based on commercial split influenza virus as an antigen (hemagglutinin = HA) and on a novel polycationic liposome as a potent adjuvant and efficient antigen carrier (CCS/C-HA vaccine). The vaccine was characterized physicochemically, and the mechanism of action of CCS/C as antigen carrier and adjuvant was studied. The optimized CCS/C-HA split virus vaccine, when administered intramuscularly (i.m.), is significantly more immunogenic in mice, rats and ferrets than split virus HA vaccine alone, and it provides for protective immunity in ferrets and mice against live virus challenge that exceeds the degree of efficacy of the split virus vaccine. Similar adjuvant effects of optimized CCS/C are also observed in mice for H1N1 swine influenza antigen. The CCS/C-HA vaccine enhances immune responses via the Th1 and Th2 pathways, and it increases both the humoral responses and the production of IL-2 and IFN-γ but not of the pro-inflammatory factor TNFα. In mice, levels of CD4(+) and CD8(+) T-cells and of MHC II and CD40 co-stimulatory molecules are also elevated. Structure-function relationship studies of the CCS molecule as an adjuvant/carrier show that replacing the saturated palmitoyl acyl chain with the mono-unsaturated oleoyl (C18:1) chain affects neither size distribution and zeta potential nor immune responses in mice. However, replacing the polyalkylamine head group spermine (having two secondary amines) with spermidine (having only one secondary amine) reduces the enhancement of the immune response by ∼ 50%, while polyalkylamines by themselves are ineffective in improving the immunogenicity over the commercial HA vaccine. This highlights the importance of the particulate nature of the carrier and the polyalkylamine secondary amines in the enhancement of the immune responses against seasonal influenza. Altogether, our results suggest that the CCS/C polycationic liposomes combine the activities of a potent adjuvant and efficient carrier of seasonal and swine flu vaccines and support further development of the CCS/C-HA vaccine.


Clinical and Vaccine Immunology | 2015

A Synthetic Influenza Virus Vaccine Induces a Cellular Immune Response That Correlates with Reduction in Symptomatology and Virus Shedding in a Randomized Phase Ib Live-Virus Challenge in Humans

Olga Pleguezuelos; Stuart Robinson; Ana Fernandez; Gregory Alan Stoloff; Alex Mann; Anthony Gilbert; Ganesh Balaratnam; Tom Wilkinson; Rob Lambkin-Williams; John Oxford; Wilson Caparros-Wanderley

ABSTRACT Current influenza vaccines elicit primarily antibody-based immunity. They require yearly revaccination and cannot be manufactured until the identification of the circulating viral strain(s). These issues remain to be addressed. Here we report a phase Ib trial of a vaccine candidate (FLU-v) eliciting cellular immunity. Thirty-two males seronegative for the challenge virus by hemagglutination inhibition assay participated in this single-center, randomized, double-blind study. Volunteers received one dose of either the adjuvant alone (placebo, n = 16) or FLU-v (500 μg) and the adjuvant (n = 16), both in saline. Twenty-one days later, FLU-v (n = 15) and placebo (n = 13) volunteers were challenged with influenza virus A/Wisconsin/67/2005 (H3N2) and monitored for 7 days. Safety, tolerability, and cellular responses were assessed pre- and postvaccination. Virus shedding and clinical signs were assessed postchallenge. FLU-v was safe and well tolerated. No difference in the prevaccination FLU-v-specific gamma interferon (IFN-γ) response was seen between groups (average ± the standard error of the mean [SEM] for the placebo and FLU-v, respectively, 1.4-fold ± 0.2-fold and 1.6-fold ± 0.5-fold higher than the negative-control value). Nineteen days postvaccination, the FLU-v group, but not the placebo group, developed FLU-v-specific IFN-γ responses (8.2-fold ± 3.9-fold versus 1.3-fold ± 0.1-fold higher than the negative-control value [average ± SEM] for FLU-v versus the placebo [P = 0.0005]). FLU-v-specific cellular responses also correlated with reductions in both viral titers (P = 0.01) and symptom scores (P = 0.02) postchallenge. Increased cellular immunity specific to FLU-v correlates with reductions in both symptom scores and virus loads. (This study has been registered at ClinicalTrials.gov under registration no. NCT01226758 and at hra.nhs.uk under EudraCT no. 2009-014716-35.)


PLOS ONE | 2014

Intranasal H5N1 vaccines, adjuvanted with chitosan derivatives, protect ferrets against highly pathogenic influenza intranasal and intratracheal challenge

Alex Mann; Nicolas Noulin; Andrew Catchpole; Koert J. Stittelaar; Leon de Waal; Edwin J.B. Veldhuis Kroeze; Michael Hinchcliffe; Alan Smith; Emanuele Montomoli; Simona Piccirella; Albert D. M. E. Osterhaus; Alastair Knight; John Oxford; Giulia Lapini; Rebecca R. Cox; Rob Lambkin-Williams

We investigated the protective efficacy of two intranasal chitosan (CSN and TM-CSN) adjuvanted H5N1 Influenza vaccines against highly pathogenic avian Influenza (HPAI) intratracheal and intranasal challenge in a ferret model. Six groups of 6 ferrets were intranasally vaccinated twice, 21 days apart, with either placebo, antigen alone, CSN adjuvanted antigen, or TM-CSN adjuvanted antigen. Homologous and intra-subtypic antibody cross-reacting responses were assessed. Ferrets were inoculated intratracheally (all treatments) or intranasally (CSN adjuvanted and placebo treatments only) with clade 1 HPAI A/Vietnam/1194/2004 (H5N1) virus 28 days after the second vaccination and subsequently monitored for morbidity and mortality outcomes. Clinical signs were assessed and nasal as well as throat swabs were taken daily for virology. Samples of lung tissue, nasal turbinates, brain, and olfactory bulb were analysed for the presence of virus and examined for histolopathological findings. In contrast to animals vaccinated with antigen alone, the CSN and TM-CSN adjuvanted vaccines induced high levels of antibodies, protected ferrets from death, reduced viral replication and abrogated disease after intratracheal challenge, and in the case of CSN after intranasal challenge. In particular, the TM-CSN adjuvanted vaccine was highly effective at eliciting protective immunity from intratracheal challenge; serologically, protective titres were demonstrable after one vaccination. The 2-dose schedule with TM-CSN vaccine also induced cross-reactive antibodies to clade 2.1 and 2.2 H5N1 viruses. Furthermore ferrets immunised with TM-CSN had no detectable virus in the respiratory tract or brain, whereas there were signs of virus in the throat and lungs, albeit at significantly reduced levels, in CSN vaccinated animals. This study demonstrated for the first time that CSN and in particular TM-CSN adjuvanted intranasal vaccines have the potential to protect against significant mortality and morbidity arising from infection with HPAI H5N1 virus.


PLOS ONE | 2013

Correlation between Human Leukocyte Antigen Class II Alleles and HAI Titers Detected Post-Influenza Vaccination

Alastair J. Moss; Fiona Gaughran; Aliyye Karasu; Anthony Gilbert; Alex Mann; Colin M. Gelder; John Oxford; Henry Stephens; Rob Lambkin-Williams

Influenza is a major cause of morbidity and mortality. Despite vaccination, many elderly recipients do not develop a protective antibody response. To determine whether Human Leukocyte Antigen (HLA) alleles modulate seroprotection to influenza, a cohort of HLA class II-typed high-risk vaccine recipients was investigated. Haemagglutinin inhibition (HAI) titres were measured 14–40 days post-subunit vaccination. Seroprotection was defined as HAI titres reaching 40 or greater for all three vaccine strains. HLA-DRB1*04∶01 and HLA-DPB1*04∶01 alleles were detected at higher frequencies in seroprotected compared with non-seroprotected individuals. Thus, the presence of certain HLA class II alleles may determine the magnitude of antibody responses to influenza vaccination.


Clinical and Experimental Immunology | 2016

Differential evolution of peripheral cytokine levels in symptomatic and asymptomatic responses to experimental influenza virus challenge.

Micah T. McClain; Ricardo Henao; Jason Williams; Bradly P. Nicholson; Timothy Veldman; Lori L. Hudson; Ephraim L. Tsalik; Robert Lambkin-Williams; Anthony Gilbert; Alex Mann; Geoffrey S. Ginsburg; Christopher W. Woods

Exposure to influenza virus triggers a complex cascade of events in the human host. In order to understand more clearly the evolution of this intricate response over time, human volunteers were inoculated with influenza A/Wisconsin/67/2005 (H3N2), and then had serial peripheral blood samples drawn and tested for the presence of 25 major human cytokines. Nine of 17 (53%) inoculated subjects developed symptomatic influenza infection. Individuals who will go on to become symptomatic demonstrate increased circulating levels of interleukin (IL)‐6, IL‐8, IL‐15, monocyte chemotactic protein (MCP)‐1 and interferon (IFN) gamma‐induced protein (IP)‐10 as early as 12–29 h post‐inoculation (during the presymptomatic phase), whereas challenged patients who remain asymptomatic do not. Overall, the immunological pathways of leucocyte recruitment, Toll‐like receptor (TLR)‐signalling, innate anti‐viral immunity and fever production are all over‐represented in symptomatic individuals very early in disease, but are also dynamic and evolve continuously over time. Comparison with simultaneous peripheral blood genomics demonstrates that some inflammatory mediators (MCP‐1, IP‐10, IL‐15) are being expressed actively in circulating cells, while others (IL‐6, IL‐8, IFN‐α and IFN‐γ) are probable effectors produced locally at the site of infection. Interestingly, asymptomatic exposed subjects are not quiescent either immunologically or genomically, but instead exhibit early and persistent down‐regulation of important inflammatory mediators in the periphery. The host inflammatory response to influenza infection is variable but robust, and evolves over time. These results offer critical insight into pathways driving influenza‐related symptomatology and offer the potential to contribute to early detection and differentiation of infected hosts.


PLOS ONE | 2016

An Intranasal Proteosome-Adjuvanted Trivalent Influenza Vaccine Is Safe, Immunogenic & Efficacious in the Human Viral Influenza Challenge Model. Serum IgG & Mucosal IgA Are Important Correlates of Protection against Illness Associated with Infection

Rob Lambkin-Williams; Colin M. Gelder; Richard Broughton; Corey Mallett; Anthony Gilbert; Alex Mann; David Z. Z. He; John Oxford; David W. Burt

Introduction A Proteosome-adjuvanted trivalent inactivated influenza vaccine (P-TIV) administered intra-nasally was shown to be safe, well tolerated and immunogenic in both systemic and mucosal compartments, and effective at preventing illness associated with evidence of influenza infection. Methods In two separate studies using the human viral challenge model, subjects were selected to be immunologically naive to A/Panama/2007/1999 (H3N2) virus and then dosed via nasal spray with one of three regimens of P-TIV or placebo. One or two doses, 15 μg or 30 μg, were given either once only or twice 14 days apart (1 x 30 μg, 2 x 30 μg, 2 x 15 μg) and subjects were challenged with A/Panama/2007/1999 (H3N2) virus. Immune responses to the vaccine antigens were measured by haemagglutination inhibition assay (HAI) and nasal wash secretory IgA (sIgA) antibodies. Results Vaccine reactogenicity was mild, predictable and generally consistent with earlier Phase I studies with this vaccine. Seroconversion to A/Panama/2007/1999 (H3N2), following vaccination but prior to challenge, occurred in 57% to 77% of subjects in active dosing groups and 2% of placebo subjects. The greatest relative rise in sIgA, following vaccination but prior to challenge, was observed in groups that received 2 doses. Conclusion Intranasal vaccination significantly protected against influenza (as defined by influenza symptoms combined with A/Panama seroconversion) following challenge with A/Panama/2007/1999 (H3N2). When data were pooled from both studies, efficacy ranged from 58% to 82% in active dosing groups for any influenza symptoms with seroconversion, 67% to 85% for systemic or lower respiratory illness and seroconversion, and 65% to 100% for febrile illness and seroconversion. The two dose regimen was found to be superior to the single dose regimen. In this study, protection against illness associated with evidence of influenza infection (evidence determined by seroconversion) following challenge with virus, significantly correlated with pre-challenge HAI titres (p = 0.0003) and mucosal sIgA (p≤0.0001) individually, and HAI (p = 0.028) and sIgA (p = 0.0014) together. HAI and sIgA levels were inversely related to rates of illness. Trial Registration ClinicalTrials.gov NCT02522754


PLOS ONE | 2016

A Tool for Investigating Asthma and COPD Exacerbations: A Newly Manufactured and Well Characterised GMP Wild-Type Human Rhinovirus for Use in the Human Viral Challenge Model

Daniel J. Fullen; Bryan D. Murray; Julie Mori; Andrew Catchpole; Daryl W. Borley; Edward J. Murray; Ganesh Balaratnam; Anthony Gilbert; Alex Mann; Fiona Hughes; Rob Lambkin-Williams; Raymond J. Pickles

Background Human Rhinovirus infection is an important precursor to asthma and chronic obstructive pulmonary disease exacerbations and the Human Viral Challenge model may provide a powerful tool in studying these and other chronic respiratory diseases. In this study we have reported the production and human characterisation of a new Wild-Type HRV-16 challenge virus produced specifically for this purpose. Methods and Stock Development A HRV-16 isolate from an 18 year old experimentally infected healthy female volunteer (University of Virginia Children’s Hospital, USA) was obtained with appropriate medical history and consent. We manufactured a new HRV-16 stock by minimal passage in a WI-38 cell line under Good Manufacturing Practice conditions. Having first subjected the stock to rigorous adventitious agent testing and determining the virus suitability for human use, we conducted an initial safety and pathogenicity clinical study in adult volunteers in our dedicated clinical quarantine facility in London. Human Challenge and Conclusions In this study we have demonstrated the new Wild-Type HRV-16 Challenge Virus to be both safe and pathogenic, causing an appropriate level of disease in experimentally inoculated healthy adult volunteers. Furthermore, by inoculating volunteers with a range of different inoculum titres, we have established the minimum inoculum titre required to achieve reproducible disease. We have demonstrated that although inoculation titres as low as 1 TCID50 can produce relatively high infection rates, the optimal titre for progression with future HRV challenge model development with this virus stock was 10 TCID50. Studies currently underway are evaluating the use of this virus as a challenge agent in asthmatics. Trial Registration ClinicalTrials.gov NCT02522832


Antigenic Variation | 2003

Influenza — The Chameleon Virus

John Oxford; Ramani Eswarasaran; Alex Mann; Robert Lambkin

Publisher Summary Human influenza virus was first isolated and identified in the United Kingdom in 1933. The prerequisites for the work on the influenza virus were the discovery of a vital protein of the virus, hemagglutinin (HA); identification of the hemagglutinating ability of the influenza virus in chicken and mammalian erythrocytes; and, most importantly, discovery of the hemagglutination inhibition (HI) test. This chapter focuses on the HA protein of the influenza A virus. The first serological study in animal models and postinfection human sera indicated a surprising degree of antigenic change or drift of the HA. It was the emergence of a completely novel influenza A virus in Asia in 1957 and another in 1968 that confirmed the suspicion—harbored since the Great Spanish Pandemic of 1918—that the influenza A virus had two epidemiological faces or modes, epidemic and pandemic. With the advent of new techniques of protein chemistry and electron microscopy, it has become clear that the HA is the most important antigen of the virus and is made up of two polypeptides—HA1 and HA2. These two constituents of the HA were separated and studied by peptide mapping, and it was discovered that antigenic changes occur entirely in HAl molecules.

Collaboration


Dive into the Alex Mann's collaboration.

Top Co-Authors

Avatar

John Oxford

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tom Wilkinson

University of Southampton

View shared research outputs
Top Co-Authors

Avatar

Robert Lambkin-Williams

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

Robert Lambkin

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

Shobana Balasingam

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge