Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rob Lambkin-Williams is active.

Publication


Featured researches published by Rob Lambkin-Williams.


Nature Medicine | 2012

Preexisting influenza-specific CD4 + T cells correlate with disease protection against influenza challenge in humans

Tom Wilkinson; Chris Ka-fai Li; Cecilia S C Chui; Arthur K Y Huang; Molly R. Perkins; Julia Liebner; Rob Lambkin-Williams; Anthony Gilbert; John Oxford; Ben Nicholas; Karl J. Staples; Tao Dong; Andrew J. McMichael; Xiao-Ning Xu

Protective immunity against influenza virus infection is mediated by neutralizing antibodies, but the precise role of T cells in human influenza immunity is uncertain. We conducted influenza infection studies in healthy volunteers with no detectable antibodies to the challenge viruses H3N2 or H1N1. We mapped T cell responses to influenza before and during infection. We found a large increase in influenza-specific T cell responses by day 7, when virus was completely cleared from nasal samples and serum antibodies were still undetectable. Preexisting CD4+, but not CD8+, T cells responding to influenza internal proteins were associated with lower virus shedding and less severe illness. These CD4+ cells also responded to pandemic H1N1 (A/CA/07/2009) peptides and showed evidence of cytotoxic activity. These cells are an important statistical correlate of homotypic and heterotypic response and may limit severity of influenza infection by new strains in the absence of specific antibody responses. Our results provide information that may aid the design of future vaccines against emerging influenza strains.


The Journal of Infectious Diseases | 2014

Virus-Specific Antibody Secreting Cell, Memory B-cell, and Sero-Antibody Responses in the Human Influenza Challenge Model

Kuan Ying Arthur Huang; Chris Ka-fai Li; Elizabeth A. Clutterbuck; Cecilia Chui; Tom Wilkinson; Anthony Gilbert; John Oxford; Rob Lambkin-Williams; Tzou Yien Lin; Andrew J. McMichael; Xiao-Ning Xu

BACKGROUND  Antibodies play a major role in the protection against influenza virus in human. However, the antibody level is usually short-lived and the cellular mechanisms underlying influenza virus-specific antibody response to acute infection remain unclear. METHODS  We studied the kinetics and magnitude of influenza virus-specific B-cell and serum antibody responses in relation to virus replication during the course of influenza infection in healthy adult volunteers who were previously seronegative and experimentally infected with seasonal influenza H1N1 A/Brisbane/59/07 virus. RESULTS  Our data demonstrated a robust expansion of the virus-specific antibody-secreting cells (ASCs) and memory B cells in the peripheral blood, which correlated with both the throat viral load and the duration of viral shedding. The ASC response was obviously detected on day 7 post-infection when the virus was completely cleared from nasal samples, and serum hemagglutination-inhibition antibodies were still undetectable. On day 28 postinfection, influenza virus-specific B cells were further identified from the circulating compartment of isotype-switched B cells. CONCLUSIONS Virus-specific ASCs could be the earliest marker of B-cell response to a new flu virus infection, such as H7N9 in humans.


Vaccine | 2010

Immunogenicity, protective efficacy and mechanism of novel CCS adjuvanted influenza vaccine.

Orli Even-Or; Sarit Samira; Eli Rochlin; Shobana Balasingam; Alex Mann; Rob Lambkin-Williams; Jack Spira; Itzhak Goldwaser; Ronald Ellis; Yechezkel Barenholz

We optimized the immunogenicity of adjuvanted seasonal influenza vaccine based on commercial split influenza virus as an antigen (hemagglutinin = HA) and on a novel polycationic liposome as a potent adjuvant and efficient antigen carrier (CCS/C-HA vaccine). The vaccine was characterized physicochemically, and the mechanism of action of CCS/C as antigen carrier and adjuvant was studied. The optimized CCS/C-HA split virus vaccine, when administered intramuscularly (i.m.), is significantly more immunogenic in mice, rats and ferrets than split virus HA vaccine alone, and it provides for protective immunity in ferrets and mice against live virus challenge that exceeds the degree of efficacy of the split virus vaccine. Similar adjuvant effects of optimized CCS/C are also observed in mice for H1N1 swine influenza antigen. The CCS/C-HA vaccine enhances immune responses via the Th1 and Th2 pathways, and it increases both the humoral responses and the production of IL-2 and IFN-γ but not of the pro-inflammatory factor TNFα. In mice, levels of CD4(+) and CD8(+) T-cells and of MHC II and CD40 co-stimulatory molecules are also elevated. Structure-function relationship studies of the CCS molecule as an adjuvant/carrier show that replacing the saturated palmitoyl acyl chain with the mono-unsaturated oleoyl (C18:1) chain affects neither size distribution and zeta potential nor immune responses in mice. However, replacing the polyalkylamine head group spermine (having two secondary amines) with spermidine (having only one secondary amine) reduces the enhancement of the immune response by ∼ 50%, while polyalkylamines by themselves are ineffective in improving the immunogenicity over the commercial HA vaccine. This highlights the importance of the particulate nature of the carrier and the polyalkylamine secondary amines in the enhancement of the immune responses against seasonal influenza. Altogether, our results suggest that the CCS/C polycationic liposomes combine the activities of a potent adjuvant and efficient carrier of seasonal and swine flu vaccines and support further development of the CCS/C-HA vaccine.


Clinical and Vaccine Immunology | 2015

A Synthetic Influenza Virus Vaccine Induces a Cellular Immune Response That Correlates with Reduction in Symptomatology and Virus Shedding in a Randomized Phase Ib Live-Virus Challenge in Humans

Olga Pleguezuelos; Stuart Robinson; Ana Fernandez; Gregory Alan Stoloff; Alex Mann; Anthony Gilbert; Ganesh Balaratnam; Tom Wilkinson; Rob Lambkin-Williams; John Oxford; Wilson Caparros-Wanderley

ABSTRACT Current influenza vaccines elicit primarily antibody-based immunity. They require yearly revaccination and cannot be manufactured until the identification of the circulating viral strain(s). These issues remain to be addressed. Here we report a phase Ib trial of a vaccine candidate (FLU-v) eliciting cellular immunity. Thirty-two males seronegative for the challenge virus by hemagglutination inhibition assay participated in this single-center, randomized, double-blind study. Volunteers received one dose of either the adjuvant alone (placebo, n = 16) or FLU-v (500 μg) and the adjuvant (n = 16), both in saline. Twenty-one days later, FLU-v (n = 15) and placebo (n = 13) volunteers were challenged with influenza virus A/Wisconsin/67/2005 (H3N2) and monitored for 7 days. Safety, tolerability, and cellular responses were assessed pre- and postvaccination. Virus shedding and clinical signs were assessed postchallenge. FLU-v was safe and well tolerated. No difference in the prevaccination FLU-v-specific gamma interferon (IFN-γ) response was seen between groups (average ± the standard error of the mean [SEM] for the placebo and FLU-v, respectively, 1.4-fold ± 0.2-fold and 1.6-fold ± 0.5-fold higher than the negative-control value). Nineteen days postvaccination, the FLU-v group, but not the placebo group, developed FLU-v-specific IFN-γ responses (8.2-fold ± 3.9-fold versus 1.3-fold ± 0.1-fold higher than the negative-control value [average ± SEM] for FLU-v versus the placebo [P = 0.0005]). FLU-v-specific cellular responses also correlated with reductions in both viral titers (P = 0.01) and symptom scores (P = 0.02) postchallenge. Increased cellular immunity specific to FLU-v correlates with reductions in both symptom scores and virus loads. (This study has been registered at ClinicalTrials.gov under registration no. NCT01226758 and at hra.nhs.uk under EudraCT no. 2009-014716-35.)


Journal of the American Geriatrics Society | 2007

Flu: Effect of Vaccine in Elderly Care Home Residents: A Randomized Trial

Fiona Gaughran; Rebecca Walwyn; Rob Lambkin-Williams; Paul Whelan; Katherine Chatterton; John Oxford; Alastair Macdonald

OBJECTIVES: To determine whether assessing seroprotection after influenza vaccine and administering booster vaccination where not achieved reduces hospitalization and death. To estimate the overall seroprotection rate of influenza vaccine.


PLOS ONE | 2014

Intranasal H5N1 vaccines, adjuvanted with chitosan derivatives, protect ferrets against highly pathogenic influenza intranasal and intratracheal challenge

Alex Mann; Nicolas Noulin; Andrew Catchpole; Koert J. Stittelaar; Leon de Waal; Edwin J.B. Veldhuis Kroeze; Michael Hinchcliffe; Alan Smith; Emanuele Montomoli; Simona Piccirella; Albert D. M. E. Osterhaus; Alastair Knight; John Oxford; Giulia Lapini; Rebecca R. Cox; Rob Lambkin-Williams

We investigated the protective efficacy of two intranasal chitosan (CSN and TM-CSN) adjuvanted H5N1 Influenza vaccines against highly pathogenic avian Influenza (HPAI) intratracheal and intranasal challenge in a ferret model. Six groups of 6 ferrets were intranasally vaccinated twice, 21 days apart, with either placebo, antigen alone, CSN adjuvanted antigen, or TM-CSN adjuvanted antigen. Homologous and intra-subtypic antibody cross-reacting responses were assessed. Ferrets were inoculated intratracheally (all treatments) or intranasally (CSN adjuvanted and placebo treatments only) with clade 1 HPAI A/Vietnam/1194/2004 (H5N1) virus 28 days after the second vaccination and subsequently monitored for morbidity and mortality outcomes. Clinical signs were assessed and nasal as well as throat swabs were taken daily for virology. Samples of lung tissue, nasal turbinates, brain, and olfactory bulb were analysed for the presence of virus and examined for histolopathological findings. In contrast to animals vaccinated with antigen alone, the CSN and TM-CSN adjuvanted vaccines induced high levels of antibodies, protected ferrets from death, reduced viral replication and abrogated disease after intratracheal challenge, and in the case of CSN after intranasal challenge. In particular, the TM-CSN adjuvanted vaccine was highly effective at eliciting protective immunity from intratracheal challenge; serologically, protective titres were demonstrable after one vaccination. The 2-dose schedule with TM-CSN vaccine also induced cross-reactive antibodies to clade 2.1 and 2.2 H5N1 viruses. Furthermore ferrets immunised with TM-CSN had no detectable virus in the respiratory tract or brain, whereas there were signs of virus in the throat and lungs, albeit at significantly reduced levels, in CSN vaccinated animals. This study demonstrated for the first time that CSN and in particular TM-CSN adjuvanted intranasal vaccines have the potential to protect against significant mortality and morbidity arising from infection with HPAI H5N1 virus.


Antimicrobial Agents and Chemotherapy | 2017

Phase 2 Randomized Trial of the Safety and Efficacy of MHAA4549A, a Broadly Neutralizing Monoclonal Antibody, in a Human Influenza A Virus Challenge Model

Jacqueline McBride; Jeremy J. Lim; Tracy Burgess; Rong Deng; Michael A. Derby; Mauricio Maia; Priscilla Horn; Omer Siddiqui; Daniel Sheinson; Haiyin Chen-Harris; Elizabeth Newton; Dimitri Fillos; Denise Nazzal; Carrie M. Rosenberger; Maikke B. Ohlson; Rob Lambkin-Williams; Hosnieh Fathi; Jeffrey M. Harris; Jorge A. Tavel

ABSTRACT MHAA4549A, a human monoclonal antibody targeting the hemagglutinin stalk region of influenza A virus (IAV), is being developed as a therapeutic for patients hospitalized with severe IAV infection. The safety and efficacy of MHAA4549A were assessed in a randomized, double-blind, placebo-controlled, dose-ranging study in a human IAV challenge model. One hundred healthy volunteers were inoculated with A/Wisconsin/67/2005 (H3N2) IAV and, 24 to 36 h later, administered a single intravenous dose of either placebo, MHAA4549A (400, 1,200, or 3,600 mg), or a standard oral dose of oseltamivir. Subjects were assessed for safety, pharmacokinetics (PK), and immunogenicity. The intent-to-treat-infected (ITTI) population was assessed for changes in viral load, influenza symptoms, and inflammatory biomarkers. MHAA4549A was well tolerated in all IAV challenge subjects. The 3,600-mg dose of MHAA4549A significantly reduced the viral burden relative to that of the placebo as determined by the area under the curve (AUC) of nasopharyngeal virus infection, quantified using quantitative PCR (98%) and 50% tissue culture infective dose (TCID50) (100%) assays. Peak viral load, duration of viral shedding, influenza symptom scores, mucus weight, and inflammatory biomarkers were also reduced. Serum PK was linear with a half-life of ∼23 days. No MHAA4549A-treated subjects developed anti-drug antibodies. In conclusion, MHAA4549A was well tolerated and demonstrated statistically significant and substantial antiviral activity in an IAV challenge model. (This study has been registered at ClinicalTrials.gov under identifier NCT01980966.)


PLOS ONE | 2013

Correlation between Human Leukocyte Antigen Class II Alleles and HAI Titers Detected Post-Influenza Vaccination

Alastair J. Moss; Fiona Gaughran; Aliyye Karasu; Anthony Gilbert; Alex Mann; Colin M. Gelder; John Oxford; Henry Stephens; Rob Lambkin-Williams

Influenza is a major cause of morbidity and mortality. Despite vaccination, many elderly recipients do not develop a protective antibody response. To determine whether Human Leukocyte Antigen (HLA) alleles modulate seroprotection to influenza, a cohort of HLA class II-typed high-risk vaccine recipients was investigated. Haemagglutinin inhibition (HAI) titres were measured 14–40 days post-subunit vaccination. Seroprotection was defined as HAI titres reaching 40 or greater for all three vaccine strains. HLA-DRB1*04∶01 and HLA-DPB1*04∶01 alleles were detected at higher frequencies in seroprotected compared with non-seroprotected individuals. Thus, the presence of certain HLA class II alleles may determine the magnitude of antibody responses to influenza vaccination.


PLOS ONE | 2016

An Intranasal Proteosome-Adjuvanted Trivalent Influenza Vaccine Is Safe, Immunogenic & Efficacious in the Human Viral Influenza Challenge Model. Serum IgG & Mucosal IgA Are Important Correlates of Protection against Illness Associated with Infection

Rob Lambkin-Williams; Colin M. Gelder; Richard Broughton; Corey Mallett; Anthony Gilbert; Alex Mann; David Z. Z. He; John Oxford; David W. Burt

Introduction A Proteosome-adjuvanted trivalent inactivated influenza vaccine (P-TIV) administered intra-nasally was shown to be safe, well tolerated and immunogenic in both systemic and mucosal compartments, and effective at preventing illness associated with evidence of influenza infection. Methods In two separate studies using the human viral challenge model, subjects were selected to be immunologically naive to A/Panama/2007/1999 (H3N2) virus and then dosed via nasal spray with one of three regimens of P-TIV or placebo. One or two doses, 15 μg or 30 μg, were given either once only or twice 14 days apart (1 x 30 μg, 2 x 30 μg, 2 x 15 μg) and subjects were challenged with A/Panama/2007/1999 (H3N2) virus. Immune responses to the vaccine antigens were measured by haemagglutination inhibition assay (HAI) and nasal wash secretory IgA (sIgA) antibodies. Results Vaccine reactogenicity was mild, predictable and generally consistent with earlier Phase I studies with this vaccine. Seroconversion to A/Panama/2007/1999 (H3N2), following vaccination but prior to challenge, occurred in 57% to 77% of subjects in active dosing groups and 2% of placebo subjects. The greatest relative rise in sIgA, following vaccination but prior to challenge, was observed in groups that received 2 doses. Conclusion Intranasal vaccination significantly protected against influenza (as defined by influenza symptoms combined with A/Panama seroconversion) following challenge with A/Panama/2007/1999 (H3N2). When data were pooled from both studies, efficacy ranged from 58% to 82% in active dosing groups for any influenza symptoms with seroconversion, 67% to 85% for systemic or lower respiratory illness and seroconversion, and 65% to 100% for febrile illness and seroconversion. The two dose regimen was found to be superior to the single dose regimen. In this study, protection against illness associated with evidence of influenza infection (evidence determined by seroconversion) following challenge with virus, significantly correlated with pre-challenge HAI titres (p = 0.0003) and mucosal sIgA (p≤0.0001) individually, and HAI (p = 0.028) and sIgA (p = 0.0014) together. HAI and sIgA levels were inversely related to rates of illness. Trial Registration ClinicalTrials.gov NCT02522754


PLOS ONE | 2016

A Tool for Investigating Asthma and COPD Exacerbations: A Newly Manufactured and Well Characterised GMP Wild-Type Human Rhinovirus for Use in the Human Viral Challenge Model

Daniel J. Fullen; Bryan D. Murray; Julie Mori; Andrew Catchpole; Daryl W. Borley; Edward J. Murray; Ganesh Balaratnam; Anthony Gilbert; Alex Mann; Fiona Hughes; Rob Lambkin-Williams; Raymond J. Pickles

Background Human Rhinovirus infection is an important precursor to asthma and chronic obstructive pulmonary disease exacerbations and the Human Viral Challenge model may provide a powerful tool in studying these and other chronic respiratory diseases. In this study we have reported the production and human characterisation of a new Wild-Type HRV-16 challenge virus produced specifically for this purpose. Methods and Stock Development A HRV-16 isolate from an 18 year old experimentally infected healthy female volunteer (University of Virginia Children’s Hospital, USA) was obtained with appropriate medical history and consent. We manufactured a new HRV-16 stock by minimal passage in a WI-38 cell line under Good Manufacturing Practice conditions. Having first subjected the stock to rigorous adventitious agent testing and determining the virus suitability for human use, we conducted an initial safety and pathogenicity clinical study in adult volunteers in our dedicated clinical quarantine facility in London. Human Challenge and Conclusions In this study we have demonstrated the new Wild-Type HRV-16 Challenge Virus to be both safe and pathogenic, causing an appropriate level of disease in experimentally inoculated healthy adult volunteers. Furthermore, by inoculating volunteers with a range of different inoculum titres, we have established the minimum inoculum titre required to achieve reproducible disease. We have demonstrated that although inoculation titres as low as 1 TCID50 can produce relatively high infection rates, the optimal titre for progression with future HRV challenge model development with this virus stock was 10 TCID50. Studies currently underway are evaluating the use of this virus as a challenge agent in asthmatics. Trial Registration ClinicalTrials.gov NCT02522832

Collaboration


Dive into the Rob Lambkin-Williams's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shobana Balasingam

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

Tom Wilkinson

University of Southampton

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge