Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alex T. Tran is active.

Publication


Featured researches published by Alex T. Tran.


Silicon-based and Hybrid Optoelectronics III | 2001

Hybrid integration of light-emitters and detectors with SOI-based micro-opto-electro-mechanical systems (MOEMS)

Joel A. Kubby; Jim Calamita; Jen-Tsorng Chang; Jingkuang Chen; Peter M. Gulvin; Chuang-Chia Lin; Robert M. Lofthus; Bill Nowak; Yi Su; Alex T. Tran; David W. Burns; Janusz Bryzek; John R Gilbert; Charles Hsu; Tom Korsmeyer; Arthur S. Morris; Thomas E. Plowman; Vladimir L. Rabinovich; Troy D. Daiber; Bruce R. Scharf; Andrew J. Zosel; Li Fan; Jim Hartman; Anis Husain; Nena Golubovic-Laikopoulos; Raji Mali; Tom Pumo; Steve Delvecchio; Shifang Zhou; Michel A. Rosa

A multidisciplinary team of end users and suppliers has collaborated to develop a novel yet broadly enabling process for the design, fabrication and assembly of Micro-Opto- Electro-Mechanical Systems (MOEMS). A key goal is to overcome the shortcomings of the polysilicon layer used for fabricating optical components in a conventional surface micromachining process. These shortcomings include the controllability and uniformity of material stress that is a major cause of curvature and deformation in released microstructures. The approach taken by the consortium to overcome this issue is to use the single-crystal-silicon (SCS) device layer of a silicon-on-insulator (SOI) wafer for the primary structural layer. Since optical flatness and mechanical reliability are of utmost importance in the realization of such devices, the use of the silicon device layer is seen as an excellent choice for devices which rely on the optical integrity of the materials used in their construction. A three-layer polysilicon process consisting of two structural layers is integrated on top of the silicon device layer. This add-on process allows for the formation of sliders, hinges, torsional springs, comb drives and other actuating mechanisms for positioning and movement of the optical components. Flip-chip bonding techniques are also being developed for the hybrid integration of edge and surface emitting lasers on the front and back surfaces of the silicon wafer, adding to the functionality and broadly enabling nature of this process. In addition to process development, the MOEMS manufacturing Consortium is extending Micro-Electro-Mechanical Systems (MEMS) modeling and simulation design tools into the optical domain, and using the newly developed infrastructure for fabrication of prototype micro-optical systems in the areas of industrial automation, optical switching for telecommunications and laser printing.


Archive | 1999

Structure and method for a microelectromechanically tunable fabry-perot cavity spectrophotometer

Decai Sun; Joel A. Kubby; Alex T. Tran; Eric Peeters


Archive | 1998

Fabrication of scanning III-V compound light emitters integrated with Si-based actuators

Decai Sun; Ross D. Bringans; Christopher L. Chua; Philip D. Floyd; Eric Peeters; Joel A. Kubby; Alex T. Tran


Archive | 2001

Process for manufacturing micromechanical and microoptomechanical structures with backside metalization

Bruce R. Scharf; Joel A. Kubby; Chuang-Chia Lin; Alex T. Tran; Andrew J. Zosel; Peter M. Gulvin; Jingkuang Chen


Archive | 1999

Process for manufacture of microoptomechanical structures

Joel A. Kubby; Jingkuang Chen; Alex T. Tran


Archive | 2003

Structure and method for a microelectromechanic cylindrical reflective diffraction grating spectrophotometer

Decai Sun; Joel A. Kubby; Jingkuang Chen; Alex T. Tran; Patrick Y. Maeda


Archive | 1999

Microelectromechanical structures defined from silicon on insulator wafers

Joel A. Kubby; Jingkuang Chen; Alex T. Tran


Archive | 2002

Micromechanical and microoptomechanical structures with single crystal silicon exposure step

Andrew J. Zosel; Joel A. Kubby; Peter M. Gulvin; Chuang-Chia Lin; Jingkuang Chen; Alex T. Tran


Archive | 2001

Method of forming protrusions on single crystal silicon structures built on silicon-on-insulator wafers

Chuang-Chia Lin; Peter M. Gulvin; Alex T. Tran; Nena Liakopoulos


Archive | 1998

Scanning vertical cavity surface emitting laser array capable of page-width image scan

Decai Sun; Alex T. Tran

Researchain Logo
Decentralizing Knowledge