Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alex Toftgaard Nielsen is active.

Publication


Featured researches published by Alex Toftgaard Nielsen.


Microbiology | 2000

Quantification of biofilm structures by the novel computer program COMSTAT

Arne Heydorn; Alex Toftgaard Nielsen; Morten Hentzer; Claus Sternberg; Michael Givskov; Bjarne Kjær Ersbøll; Søren Molin

The structural organization of four microbial communities was analysed by a novel computer program, COMSTAT, which comprises ten features for quantifying three-dimensional biofilm image stacks. Monospecies biofilms of each of the four bacteria, Pseudomonas: putida, P. aureofaciens, P. fluorescens and P. aeruginosa, tagged with the green fluorescent protein (GFP) were grown in flow chambers with a defined minimal medium as substrate. Analysis by the COMSTAT program of four variables describing biofilm structure - mean thickness, roughness, substratum coverage and surface to volume ratio - showed that the four Pseudomonas: strains represent different modes of biofilm growth. P. putida had a unique developmental pattern starting with single cells on the substratum growing into micro-colonies, which were eventually succeeded by long filaments and elongated cell clusters. P. aeruginosa colonized the entire substratum, and formed flat, uniform biofilms. P. aureofaciens resembled P. aeruginosa, but had a stronger tendency to form micro-colonies. Finally, the biofilm structures of P. fluorescens had a phenotype intermediate between those of P. putida and P. aureofaciens. Analysis of biofilms of P. aureofaciens growing on 0.03 mM, 0.1 mM or 0.5 mM citrate minimal media showed that mean biofilm thickness increased with increasing citrate concentration. Moreover, biofilm roughness increased with lower citrate concentrations, whereas surface to volume ratio increased with higher citrate concentrations.


Methods in Enzymology | 1999

Molecular tools for study of biofilm physiology.

Bjarke Bak Christensen; Claus Sternberg; Jens Bo Andersen; Robert J. Palmer; Alex Toftgaard Nielsen; Michael Givskov; Søren Molin

Publisher Summary This chapter describes methods for the handling and analysis of microbial behavior of organisms in biofilm communities at both microscopic and macroscopic levels. Only methods and reporter systems that can be applied without disturbing the spatial organization of the organisms in the biofilm are presented. The in situ methods described in this chapter can be used for more than just identifying or tracing cells or genes in biofilms. By combining promoters that respond to specific environmental signals with appropriate marker genes, it may be possible to tag specific organisms and use these as monitor systems to estimate local chemical composition directly in the biofilms. Changes in environmental conditions will also have significant effects on the physiological state of the organisms. Such shifting conditions may result in several responses, such as altered growth rates, stress response, starvation, or even cell death. Most of these responses can be visualized directly using specific promoter–reporter fusions. The ribosome number is a reliable indicator of growth rate in bacteria growing in balanced growth and has been used as a standard for growth rates in biofilm-embedded bacteria as well.


PLOS Pathogens | 2006

RpoS Controls the Vibrio cholerae Mucosal Escape Response

Alex Toftgaard Nielsen; Nadia A Dolganov; Glen Otto; Michael C. Miller; Cheng Yen Wu; Gary K. Schoolnik

Vibrio cholerae causes a severe diarrhoeal disease by secreting a toxin during colonization of the epithelium in the small intestine. Whereas the initial steps of the infectious process have been intensively studied, the last phases have received little attention. Confocal microscopy of V. cholerae O1-infected rabbit ileal loops captured a distinctive stage in the infectious process: 12 h post-inoculation, bacteria detach from the epithelial surface and move into the fluid-filled lumen. Designated the “mucosal escape response,” this phenomenon requires RpoS, the stationary phase alternative sigma factor. Quantitative in vivo localization assays corroborated the rpoS phenotype and showed that it also requires HapR. Expression profiling of bacteria isolated from ileal loop fluid and mucus demonstrated a significant RpoS-dependent upregulation of many chemotaxis and motility genes coincident with the emigration of bacteria from the epithelial surface. In stationary phase cultures, RpoS was also required for upregulation of chemotaxis and motility genes, for production of flagella, and for movement of bacteria across low nutrient swarm plates. The hapR mutant produced near-normal numbers of flagellated cells, but was significantly less motile than the wild-type parent. During in vitro growth under virulence-inducing conditions, the rpoS mutant produced 10- to 100-fold more cholera toxin than the wild-type parent. Although the rpoS mutant caused only a small over-expression of the genes encoding cholera toxin in the ileal loop, it resulted in a 30% increase in fluid accumulation compared to the wild-type. Together, these results show that the mucosal escape response is orchestrated by an RpoS-dependent genetic program that activates chemotaxis and motility functions. This may furthermore coincide with reduced virulence gene expression, thus preparing the organism for the next stage in its life cycle.


Current Opinion in Biotechnology | 2014

Trash to treasure: production of biofuels and commodity chemicals via syngas fermenting microorganisms

Haythem Latif; Ahmad A. Zeidan; Alex Toftgaard Nielsen; Karsten Zengler

Fermentation of syngas is a means through which unutilized organic waste streams can be converted biologically into biofuels and commodity chemicals. Despite recent advances, several issues remain which limit implementation of industrial-scale syngas fermentation processes. At the cellular level, the energy conservation mechanism of syngas fermenting microorganisms has not yet been entirely elucidated. Furthermore, there was a lack of genetic tools to study and ultimately enhance their metabolic capabilities. Recently, substantial progress has been made in understanding the intricate energy conservation mechanisms of these microorganisms. Given the complex relationship between energy conservation and metabolism, strain design greatly benefits from systems-level approaches. Numerous genetic manipulation tools have also been developed, paving the way for the use of metabolic engineering and systems biology approaches. Rational strain designs can now be deployed resulting in desirable phenotypic traits for large-scale production.


Expert Review of Molecular Diagnostics | 2003

Single nucleotide polymorphism genotyping using locked nucleic acid (LNA

Peter Mouritzen; Alex Toftgaard Nielsen; Henrik Pfundheller; Yoanna Choleva; Lars Kongsbak; Søren Møller

Locked nucleic acid (LNA™) is a new class of bicyclic high affinity DNA analogs. LNA-containing oligonucleotides confer significantly increased affinity against their complementary DNA targets, increased mismatch discrimination (ΔTm) and allow full control of the melting point of the hybridization reaction. LNA chemistry is completely compatible with the traditional DNA phosphoramidite chemistry and therefore LNA–DNA mixmer oligonucleotides can be designed with complete freedom for optimal performance. These properties render LNA oligonucleotides very well suited for SNP genotyping and have enabled several approaches for enzyme-independent SNP genotyping based on allele-specific hybridization. In addition, allele-specific PCR assays relying on enzymatically-enhanced discrimination can be improved using LNA-modified oligonucleotides. The use of LNA transforms enzyme-independent genotyping approaches into experimentally simple, robust and cost-effective assays, which are highly suited for genotyping in clinical and industrial settings.


Biotechnology and Bioengineering | 2014

Accelerating genome editing in CHO cells using CRISPR Cas9 and CRISPy, a web‐based target finding tool

Carlotta Ronda; Lasse Ebdrup Pedersen; Henning Gram Hansen; Thomas Beuchert Kallehauge; Michael J. Betenbaugh; Alex Toftgaard Nielsen; Helene Faustrup Kildegaard

Chinese hamster ovary (CHO) cells are widely used in the biopharmaceutical industry as a host for the production of complex pharmaceutical proteins. Thus genome engineering of CHO cells for improved product quality and yield is of great interest. Here, we demonstrate for the first time the efficacy of the CRISPR Cas9 technology in CHO cells by generating site‐specific gene disruptions in COSMC and FUT8, both of which encode proteins involved in glycosylation. The tested single guide RNAs (sgRNAs) created an indel frequency up to 47.3% in COSMC, while an indel frequency up to 99.7% in FUT8 was achieved by applying lectin selection. All eight sgRNAs examined in this study resulted in relatively high indel frequencies, demonstrating that the Cas9 system is a robust and efficient genome‐editing methodology in CHO cells. Deep sequencing revealed that 85% of the indels created by Cas9 resulted in frameshift mutations at the target sites, with a strong preference for single base indels. Finally, we have developed a user‐friendly bioinformatics tool, named “CRISPy” for rapid identification of sgRNA target sequences in the CHO‐K1 genome. The CRISPy tool identified 1,970,449 CRISPR targets divided into 27,553 genes and lists the number of off‐target sites in the genome. In conclusion, the proven functionality of Cas9 to edit CHO genomes combined with our CRISPy database have the potential to accelerate genome editing and synthetic biology efforts in CHO cells. Biotechnol. Bioeng. 2014; 111: 1604–1616.


PLOS Pathogens | 2010

A Bistable Switch and Anatomical Site Control Vibrio cholerae Virulence Gene Expression in the Intestine

Alex Toftgaard Nielsen; Nadia A Dolganov; Thomas Høj Rasmussen; Glen Otto; Michael C. Miller; Stephen A. Felt; Stéphanie L Torreilles; Gary K. Schoolnik

A fundamental, but unanswered question in host-pathogen interactions is the timing, localization and population distribution of virulence gene expression during infection. Here, microarray and in situ single cell expression methods were used to study Vibrio cholerae growth and virulence gene expression during infection of the rabbit ligated ileal loop model of cholera. Genes encoding the toxin-coregulated pilus (TCP) and cholera toxin (CT) were powerfully expressed early in the infectious process in bacteria adjacent to epithelial surfaces. Increased growth was found to co-localize with virulence gene expression. Significant heterogeneity in the expression of tcpA, the repeating subunit of TCP, was observed late in the infectious process. The expression of tcpA, studied in single cells in a homogeneous medium, demonstrated unimodal induction of tcpA after addition of bicarbonate, a chemical inducer of virulence gene expression. Striking bifurcation of the population occurred during entry into stationary phase: one subpopulation continued to express tcpA, whereas the expression declined in the other subpopulation. ctxA, encoding the A subunit of CT, and toxT, encoding the proximal master regulator of virulence gene expression also exhibited the bifurcation phenotype. The bifurcation phenotype was found to be reversible, epigenetic and to persist after removal of bicarbonate, features consistent with bistable switches. The bistable switch requires the positive-feedback circuit controlling ToxT expression and formation of the CRP-cAMP complex during entry into stationary phase. Key features of this bistable switch also were demonstrated in vivo, where striking heterogeneity in tcpA expression was observed in luminal fluid in later stages of the infection. When this fluid was diluted into artificial seawater, bacterial aggregates continued to express tcpA for prolonged periods of time. The bistable control of virulence gene expression points to a mechanism that could generate a subpopulation of V. cholerae that continues to produce TCP and CT in the rice water stools of cholera patients.


Scientific Reports | 2016

CRMAGE: CRISPR Optimized MAGE Recombineering

Carlotta Ronda; Lasse Ebdrup Pedersen; Morten Otto Alexander Sommer; Alex Toftgaard Nielsen

A bottleneck in metabolic engineering and systems biology approaches is the lack of efficient genome engineering technologies. Here, we combine CRISPR/Cas9 and λ Red recombineering based MAGE technology (CRMAGE) to create a highly efficient and fast method for genome engineering of Escherichia coli. Using CRMAGE, the recombineering efficiency was between 96.5% and 99.7% for gene recoding of three genomic targets, compared to between 0.68% and 5.4% using traditional recombineering. For modulation of protein synthesis (small insertion/RBS substitution) the efficiency was increased from 6% to 70%. CRMAGE can be multiplexed and enables introduction of at least two mutations in a single round of recombineering with similar efficiencies. PAM-independent loci were targeted using degenerate codons, thereby making it possible to modify any site in the genome. CRMAGE is based on two plasmids that are assembled by a USER-cloning approach enabling quick and cost efficient gRNA replacement. CRMAGE furthermore utilizes CRISPR/Cas9 for efficient plasmid curing, thereby enabling multiple engineering rounds per day. To facilitate the design process, a web-based tool was developed to predict both the λ Red oligos and the gRNAs. The CRMAGE platform enables highly efficient and fast genome editing and may open up promising prospective for automation of genome-scale engineering.


ACS Synthetic Biology | 2015

CasEMBLR: Cas9-Facilitated Multiloci Genomic Integration of in Vivo Assembled DNA Parts in Saccharomyces cerevisiae

Tadas Jakočiu̅nas; Arun S. Rajkumar; Jie Zhang; Dushica Arsovska; Angelica Rodriguez; Christian Bille Jendresen; Mette Louise Skjødt; Alex Toftgaard Nielsen; Irina Borodina; Michael Krogh Jensen; Jay D. Keasling

Homologous recombination (HR) in Saccharomyces cerevisiae has been harnessed for both plasmid construction and chromosomal integration of foreign DNA. Still, native HR machinery is not efficient enough for complex and marker-free genome engineering required for modern metabolic engineering. Here, we present a method for marker-free multiloci integration of in vivo assembled DNA parts. By the use of CRISPR/Cas9-mediated one-step double-strand breaks at single, double and triple integration sites we report the successful in vivo assembly and chromosomal integration of DNA parts. We call our method CasEMBLR and validate its applicability for genome engineering and cell factory development in two ways: (i) introduction of the carotenoid pathway from 15 DNA parts into three targeted loci, and (ii) creation of a tyrosine production strain using ten parts into two loci, simultaneously knocking out two genes. This method complements and improves the current set of tools available for genome engineering in S. cerevisiae.


Microbial Cell Factories | 2015

CrEdit: CRISPR mediated multi-loci gene integration in Saccharomyces cerevisiae

Carlotta Ronda; Jerome Maury; Tadas Jakočiu̅nas; Simo Abdessamad Jacobsen; Susanne Manuela Germann; Scott James Harrison; Irina Borodina; Jay D. Keasling; Michael Krogh Jensen; Alex Toftgaard Nielsen

BackgroundOne of the bottlenecks in production of biochemicals and pharmaceuticals in Saccharomyces cerevisiae is stable and homogeneous expression of pathway genes. Integration of genes into the genome of the production organism is often a preferred option when compared to expression from episomal vectors. Existing approaches for achieving stable simultaneous genome integrations of multiple DNA fragments often result in relatively low integration efficiencies and furthermore rely on the use of selection markers.ResultsHere, we have developed a novel method, CrEdit (CRISPR/Cas9 mediated genome Editing), which utilizes targeted double strand breaks caused by CRISPR/Cas9 to significantly increase the efficiency of homologous integration in order to edit and manipulate genomic DNA. Using CrEdit, the efficiency and locus specificity of targeted genome integrations reach close to 100% for single gene integration using short homology arms down to 60 base pairs both with and without selection. This enables direct and cost efficient inclusion of homology arms in PCR primers. As a proof of concept, a non-native β-carotene pathway was reconstructed in S. cerevisiae by simultaneous integration of three pathway genes into individual intergenic genomic sites. Using longer homology arms, we demonstrate highly efficient and locus-specific genome integration even without selection with up to 84% correct clones for simultaneous integration of three gene expression cassettes.ConclusionsThe CrEdit approach enables fast and cost effective genome integration for engineering of S. cerevisiae. Since the choice of the targeting sites is flexible, CrEdit is a powerful tool for diverse genome engineering applications.

Collaboration


Dive into the Alex Toftgaard Nielsen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Søren Molin

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anja Boisen

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rebecca Lennen

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Songyuan Li

Novo Nordisk Foundation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge