Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hsin-Zon Tsai is active.

Publication


Featured researches published by Hsin-Zon Tsai.


Nano Letters | 2011

Local Electronic Properties of Graphene on a BN Substrate via Scanning Tunneling Microscopy

Régis Decker; Yang Wang; Victor W. Brar; William Regan; Hsin-Zon Tsai; Qiong Wu; W. Gannett; Alex Zettl; Michael F. Crommie

The use of boron nitride (BN) as a substrate for graphene nanodevices has attracted much interest since the recent report that BN greatly improves the mobility of charge carriers in graphene compared to standard SiO(2) substrates. We have explored the local microscopic properties of graphene on a BN substrate using scanning tunneling microscopy. We find that BN substrates result in extraordinarily flat graphene layers that display microscopic Moiré patterns arising from the relative orientation of the graphene and BN lattices. Gate-dependent dI/dV spectra of graphene on BN exhibit spectroscopic features that are sharper than those obtained for graphene on SiO(2). We observe a significant reduction in local microscopic charge inhomogeneity for graphene on BN compared to graphene on SiO(2).


Science | 2013

Direct Imaging of Covalent Bond Structure in Single-Molecule Chemical Reactions

Dimas G. de Oteyza; Patrick Gorman; Yen-Chia Chen; Sebastian Wickenburg; Alexander Riss; Duncan J. Mowbray; Grisha Etkin; Zahra Pedramrazi; Hsin-Zon Tsai; Angel Rubio; Michael F. Crommie; Felix R. Fischer

Watching Organic Reactions Single-molecule studies can overcome the difficulty of inferring the various outcomes of reactions in ensemble measurements. De Oteyza et al. (p. 1434, published online 30 May; see the Perspective by Giessibl) used a variation of noncontact atomic force microscopy in which the imaging tip was derivatized with a single CO molecule to obtain subnanometer-resolution images of conjugated organic molecules undergoing reaction on a silver surface. Different thermally induced cyclization reactions of oligo- (phenylene-1,2-ethynylenes) were observed. Noncontact atomic force microscopy imaged the bond structure of an adsorbed organic reactant and its cyclization products. [Also see Perspective by Giessibl] Observing the intricate chemical transformation of an individual molecule as it undergoes a complex reaction is a long-standing challenge in molecular imaging. Advances in scanning probe microscopy now provide the tools to visualize not only the frontier orbitals of chemical reaction partners and products, but their internal covalent bond configurations as well. We used noncontact atomic force microscopy to investigate reaction-induced changes in the detailed internal bond structure of individual oligo-(phenylene-1,2-ethynylenes) on a (100) oriented silver surface as they underwent a series of cyclization processes. Our images reveal the complex surface reaction mechanisms underlying thermally induced cyclization cascades of enediynes. Calculations using ab initio density functional theory provide additional support for the proposed reaction pathways.


Nature Nanotechnology | 2014

Photoinduced doping in heterostructures of graphene and boron nitride

Long Ju; Jairo Velasco; Edwin W. Huang; Salman Kahn; Casey Nosiglia; Hsin-Zon Tsai; Wei Yang; T. Taniguchi; Kenji Watanabe; Yuegang Zhang; Guangyu Zhang; Michael F. Crommie; Alex Zettl; Feng Wang

The design of stacks of layered materials in which adjacent layers interact by van der Waals forces[1] has enabled the combination of various two-dimensional crystals with different electrical, optical and mechanical properties, and the emergence of novel physical phenomena and device functionality[2-8]. Here we report photo-induced doping in van der Waals heterostructures (VDHs) consisting of graphene and boron nitride layers. It enables flexible and repeatable writing and erasing of charge doping in graphene with visible light. We demonstrate that this photo-induced doping maintains the high carrier mobility of the graphene-boron nitride (G/BN) heterostructure, which resembles the modulation doping technique used in semiconductor heterojunctions, and can be used to generate spatially-varying doping profiles such as p-n junctions. We show that this photo-induced doping arises from microscopically coupled optical and electrical responses of G/BN heterostructures, which includes optical excitation of defect transitions in boron nitride, electrical transport in graphene, and charge transfer between boron nitride and graphene.The design of stacks of layered materials in which adjacent layers interact by van der Waals forces has enabled the combination of various two-dimensional crystals with different electrical, optical and mechanical properties as well as the emergence of novel physical phenomena and device functionality. Here, we report photoinduced doping in van der Waals heterostructures consisting of graphene and boron nitride layers. It enables flexible and repeatable writing and erasing of charge doping in graphene with visible light. We demonstrate that this photoinduced doping maintains the high carrier mobility of the graphene/boron nitride heterostructure, thus resembling the modulation doping technique used in semiconductor heterojunctions, and can be used to generate spatially varying doping profiles such as p-n junctions. We show that this photoinduced doping arises from microscopically coupled optical and electrical responses of graphene/boron nitride heterostructures, including optical excitation of defect transitions in boron nitride, electrical transport in graphene, and charge transfer between boron nitride and graphene.


Nature Physics | 2016

Characterization of collective ground states in single-layer NbSe2

Miguel M. Ugeda; Aaron J. Bradley; Yi Zhang; Seita Onishi; Yi Chen; Wei Ruan; Claudia Ojeda-Aristizabal; Hyejin Ryu; Mark T. Edmonds; Hsin-Zon Tsai; Alexander Riss; Sung-Kwan Mo; Dunghai Lee; Alex Zettl; Zahid Hussain; Zhi-Xun Shen; Michael F. Crommie

What happens to correlated electronic phases—superconductivity and charge density wave ordering—as a material is thinned? Experiments show that both can remain intact in just a single layer of niobium diselenide.


Science | 2013

Observing atomic collapse resonances in artificial nuclei on graphene.

Yang Wang; Dillon Wong; A. V. Shytov; Victor W. Brar; Sangkook Choi; Qiong Wu; Hsin-Zon Tsai; William Regan; Alex Zettl; Roland Kawakami; Steven G. Louie; L. S. Levitov; Michael F. Crommie

Creating Unstable Atomic Orbitals A hallmark of atomic Bohr orbitals is that they are stable; that is, time independent. However, for a very highly charged nucleus, the electrons must be described with the relativistic Dirac equation; the motion becomes time dependent, with electrons spiraling into the nucleus and coupling to positrons at large distances from the nucleus. In graphene, charge carriers are mass-less and described by the relativistic Dirac equation, and could also exhibit “atomic collapse” states. Wang et al. (p. 734, published online 7 March) created highly charged clusters of calcium dimers by atomic manipulation with a scanning tunneling microscope. The emergence of atomic-collapse resonances with increasing cluster size and charge was observed with scanning tunneling microscopy. The massless charge carriers in graphene interact with highly charged defects to create an analog of atomic collapse states. Relativistic quantum mechanics predicts that when the charge of a superheavy atomic nucleus surpasses a certain threshold, the resulting strong Coulomb field causes an unusual atomic collapse state; this state exhibits an electron wave function component that falls toward the nucleus, as well as a positron component that escapes to infinity. In graphene, where charge carriers behave as massless relativistic particles, it has been predicted that highly charged impurities should exhibit resonances corresponding to these atomic collapse states. We have observed the formation of such resonances around artificial nuclei (clusters of charged calcium dimers) fabricated on gated graphene devices via atomic manipulation with a scanning tunneling microscope. The energy and spatial dependence of the atomic collapse state measured with scanning tunneling microscopy revealed unexpected behavior when occupied by electrons.


Nano Letters | 2014

Local Electronic and Chemical Structure of Oligo-acetylene Derivatives Formed Through Radical Cyclizations at a Surface

Alexander Riss; Sebastian Wickenburg; Patrick Gorman; Liang Z. Tan; Hsin-Zon Tsai; Dimas G. de Oteyza; Yen-Chia Chen; Aaron J. Bradley; Miguel M. Ugeda; Grisha Etkin; Steven G. Louie; Felix R. Fischer; Michael F. Crommie

Semiconducting π-conjugated polymers have attracted significant interest for applications in light-emitting diodes, field-effect transistors, photovoltaics, and nonlinear optoelectronic devices. Central to the success of these functional organic materials is the facile tunability of their electrical, optical, and magnetic properties along with easy processability and the outstanding mechanical properties associated with polymeric structures. In this work we characterize the chemical and electronic structure of individual chains of oligo-(E)-1,1′-bi(indenylidene), a polyacetylene derivative that we have obtained through cooperative C1–C5 thermal enediyne cyclizations on Au(111) surfaces followed by a step-growth polymerization of the (E)-1,1′-bi(indenylidene) diradical intermediates. We have determined the combined structural and electronic properties of this class of oligomers by characterizing the atomically precise chemical structure of individual monomer building blocks and oligomer chains (via noncontact atomic force microscopy (nc-AFM)), as well as by imaging their localized and extended molecular orbitals (via scanning tunneling microscopy and spectroscopy (STM/STS)). Our combined structural and electronic measurements reveal that the energy associated with extended π-conjugated states in these oligomers is significantly lower than the energy of the corresponding localized monomer orbitals, consistent with theoretical predictions.


Nature Nanotechnology | 2015

Characterization and manipulation of individual defects in insulating hexagonal boron nitride using scanning tunnelling microscopy

Dillon Wong; Jairo Velasco; Long Ju; Juwon Lee; Salman Kahn; Hsin-Zon Tsai; Takashi Taniguchi; Kenji Watanabe; Alex Zettl; Feng Wang; Michael F. Crommie

Defects play a key role in determining the properties and technological applications of nanoscale materials and, because they tend to be highly localized, characterizing them at the single-defect level is of particular importance. Scanning tunnelling microscopy has long been used to image the electronic structure of individual point defects in conductors, semiconductors and ultrathin films, but such single-defect electronic characterization remains an elusive goal for intrinsic bulk insulators. Here, we show that individual native defects in an intrinsic bulk hexagonal boron nitride insulator can be characterized and manipulated using a scanning tunnelling microscope. This would typically be impossible due to the lack of a conducting drain path for electrical current. We overcome this problem by using a graphene/boron nitride heterostructure, which exploits the atomically thin nature of graphene to allow the visualization of defect phenomena in the underlying bulk boron nitride. We observe three different defect structures that we attribute to defects within the bulk insulating boron nitride. Using scanning tunnelling spectroscopy we obtain charge and energy-level information for these boron nitride defect structures. We also show that it is possible to manipulate the defects through voltage pulses applied to the scanning tunnelling microscope tip.


Nature Physics | 2012

Mapping Dirac quasiparticles near a single Coulomb impurity on graphene

Yang Wang; Victor W. Brar; A. V. Shytov; Qiong Wu; William Regan; Hsin-Zon Tsai; Alex Zettl; L. S. Levitov; Michael F. Crommie

In metals, the Coulomb potential of charged impurities is strongly screened, but in graphene, the potential charge of a few-atom cluster of cobalt can extend up to 10 nm. By measuring differences in the way electron-like and hole-like Dirac fermions are scattered from this potential, the intrinsic dielectric constant of graphene can be determined.


Nature Chemistry | 2016

Imaging single-molecule reaction intermediates stabilized by surface dissipation and entropy

Alexander Riss; Alejandro Pérez Paz; Sebastian Wickenburg; Hsin-Zon Tsai; Dimas G. de Oteyza; Aaron J. Bradley; Miguel M. Ugeda; Patrick Gorman; Han Sae Jung; Michael F. Crommie; Angel Rubio; Felix R. Fischer

Chemical transformations at the interface between solid/liquid or solid/gaseous phases of matter lie at the heart of key industrial-scale manufacturing processes. A comprehensive study of the molecular energetics and conformational dynamics that underlie these transformations is often limited to ensemble-averaging analytical techniques. Here we report the detailed investigation of a surface-catalysed cross-coupling and sequential cyclization cascade of 1,2-bis(2-ethynyl phenyl)ethyne on Ag(100). Using non-contact atomic force microscopy, we imaged the single-bond-resolved chemical structure of transient metastable intermediates. Theoretical simulations indicate that the kinetic stabilization of experimentally observable intermediates is determined not only by the potential-energy landscape, but also by selective energy dissipation to the substrate and entropic changes associated with key transformations along the reaction pathway. The microscopic insights gained here pave the way for the rational design and control of complex organic reactions at the surface of heterogeneous catalysts.


Bulletin of the American Physical Society | 2015

Optimizing Broadband Terahertz Modulation with Hybrid Graphene/Metasurface Structures

Sufei Shi; Bo Zeng; H.-L. Han; Xiaoping Hong; Hsin-Zon Tsai; Han Sae Jung; Alex Zettl; M. F. Crommie; Feng Wang

We demonstrate efficient terahertz (THz) modulation by coupling graphene strongly with a broadband THz metasurface device. This THz metasurface, made of periodic gold slit arrays, shows near unity broadband transmission, which arises from coherent radiation of the enhanced local-field in the slits. Utilizing graphene as an active load with tunable conductivity, we can significantly modify the local-field enhancement and strongly modulate the THz wave transmission. This hybrid device also provides a new platform for future nonlinear THz spectroscopy study of graphene.

Collaboration


Dive into the Hsin-Zon Tsai's collaboration.

Top Co-Authors

Avatar

Michael F. Crommie

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Alex Zettl

University of California

View shared research outputs
Top Co-Authors

Avatar

Dillon Wong

University of California

View shared research outputs
Top Co-Authors

Avatar

Salman Kahn

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kenji Watanabe

National Institute for Materials Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Takashi Taniguchi

National Institute for Materials Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge