Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexa L. Mattheyses is active.

Publication


Featured researches published by Alexa L. Mattheyses.


Cell Stem Cell | 2012

Signaling Network Crosstalk in Human Pluripotent Cells: A Smad2/3-Regulated Switch that Controls the Balance between Self-Renewal and Differentiation

Amar M. Singh; David Reynolds; Timothy S. Cliff; Satoshi Ohtsuka; Alexa L. Mattheyses; Yuhua Sun; Laura Menendez; Michael Kulik; Stephen Dalton

A general mechanism for how intracellular signaling pathways in human pluripotent cells are coordinated and how they maintain self-renewal remain to be elucidated. In this report, we describe a signaling mechanism where PI3K/Akt activity maintains self-renewal by restraining prodifferentiation signaling through suppression of the Raf/Mek/Erk and canonical Wnt signaling pathways. When active, PI3K/Akt establishes conditions where Activin A/Smad2,3 performs a pro-self-renewal function by activating target genes, including Nanog. When PI3K/Akt signaling is low, Wnt effectors are activated and function in conjunction with Smad2,3 to promote differentiation. The switch in Smad2,3 activity after inactivation of PI3K/Akt requires the activation of canonical Wnt signaling by Erk, which targets Gsk3β. In sum, we define a signaling framework that converges on Smad2,3 and determines its ability to regulate the balance between alternative cell states. This signaling paradigm has far-reaching implications for cell fate decisions during early embryonic development.


Journal of Cell Science | 2010

Imaging with total internal reflection fluorescence microscopy for the cell biologist

Alexa L. Mattheyses; Sanford M. Simon; Joshua Z. Rappoport

Total internal reflection fluorescence (TIRF) microscopy can be used in a wide range of cell biological applications, and is particularly well suited to analysis of the localization and dynamics of molecules and events near the plasma membrane. The TIRF excitation field decreases exponentially with distance from the cover slip on which cells are grown. This means that fluorophores close to the cover slip (e.g. within ~100 nm) are selectively illuminated, highlighting events that occur within this region. The advantages of using TIRF include the ability to obtain high-contrast images of fluorophores near the plasma membrane, very low background from the bulk of the cell, reduced cellular photodamage and rapid exposure times. In this Commentary, we discuss the applications of TIRF to the study of cell biology, the physical basis of TIRF, experimental setup and troubleshooting.


The Journal of Neuroscience | 2013

Pharmacologic inhibition of ROCK2 suppresses amyloid-β production in an Alzheimer's disease mouse model.

Jeremy H. Herskowitz; Yangbo Feng; Alexa L. Mattheyses; Chadwick M. Hales; Lenora Higginbotham; Duc M. Duong; Thomas J. Montine; Juan C. Troncoso; Madhav Thambisetty; Nicholas T. Seyfried; Allan I. Levey; James J. Lah

Alzheimers disease (AD) is the leading cause of dementia and has no cure. Genetic, cell biological, and biochemical studies suggest that reducing amyloid-β (Aβ) production may serve as a rational therapeutic avenue to delay or prevent AD progression. Inhibition of RhoA, a Rho GTPase family member, is proposed to curb Aβ production. However, a barrier to this hypothesis has been the limited understanding of how the principal downstream effectors of RhoA, Rho-associated, coiled-coil containing protein kinase (ROCK) 1 and ROCK2, modulate Aβ generation. Here, we report that ROCK1 knockdown increased endogenous human Aβ production, whereas ROCK2 knockdown decreased Aβ levels. Inhibition of ROCK2 kinase activity, using an isoform-selective small molecule (SR3677), suppressed β-site APP cleaving enzyme 1 (BACE1) enzymatic action and diminished production of Aβ in AD mouse brain. Immunofluorescence and confocal microscopy analyses revealed that SR3677 alters BACE1 endocytic distribution and promotes amyloid precursor protein (APP) traffic to lysosomes. Moreover, SR3677 blocked ROCK2 phosphorylation of APP at threonine 654 (T654); in neurons, T654 was critical for APP processing to Aβ. These observations suggest that ROCK2 inhibition reduces Aβ levels through independent mechanisms. Finally, ROCK2 protein levels were increased in asymptomatic AD, mild cognitive impairment, and AD brains, demonstrating that ROCK2 levels change in the earliest stages of AD and remain elevated throughout disease progression. Collectively, these findings highlight ROCK2 as a mechanism-based therapeutic target to combat Aβ production in AD.


Journal of Structural Biology | 2012

Domain topology of nucleoporin Nup98 within the nuclear pore complex

Guillaume Chatel; Sachin H. Desai; Alexa L. Mattheyses; Maureen A. Powers; Birthe Fahrenkrog

Nuclear pore complexes (NPCs) facilitate selective transport of macromolecules across the nuclear envelope in interphase eukaryotic cells. NPCs are composed of roughly 30 different proteins (nucleoporins) of which about one third are characterized by the presence of phenylalanine-glycine (FG) repeat domains that allow the association of soluble nuclear transport receptors with the NPC. Two types of FG (FG/FxFG and FG/GLFG) domains are found in nucleoporins and Nup98 is the sole vertebrate nucleoporin harboring the GLFG-type repeats. By immuno-electron microscopy using isolated nuclei from Xenopus oocytes we show here the localization of distinct domains of Nup98. We examined the localization of the C- and N-terminal domain of Nup98 by immunogold-labeling using domain-specific antibodies against Nup98 and by expressing epitope tagged versions of Nup98. Our studies revealed that anchorage of Nup98 to NPCs through its C-terminal autoproteolytic domain occurs in the center of the NPC, whereas its N-terminal GLFG domain is more flexible and is detected at multiple locations within the NPC. Additionally, we have confirmed the central localization of Nup98 within the NPC using super resolution structured illumination fluorescence microscopy (SIM) to position Nup98 domains relative to markers of cytoplasmic filaments and the nuclear basket. Our data support the notion that Nup98 is a major determinant of the permeability barrier of NPCs.


PLOS ONE | 2014

Desmosome Assembly and Disassembly Are Membrane Raft-Dependent

Sara N. Stahley; Masataka Saito; Victor Faundez; Michael Koval; Alexa L. Mattheyses; Andrew P. Kowalczyk

Strong intercellular adhesion is critical for tissues that experience mechanical stress, such as the skin and heart. Desmosomes provide adhesive strength to tissues by anchoring desmosomal cadherins of neighboring cells to the intermediate filament cytoskeleton. Alterations in assembly and disassembly compromise desmosome function and may contribute to human diseases, such as the autoimmune skin blistering disease pemphigus vulgaris (PV). We previously demonstrated that PV auto-antibodies directed against the desmosomal cadherin desmoglein 3 (Dsg3) cause loss of adhesion by triggering membrane raft-mediated Dsg3 endocytosis. We hypothesized that raft membrane microdomains play a broader role in desmosome homeostasis by regulating the dynamics of desmosome assembly and disassembly. In human keratinocytes, Dsg3 is raft associated as determined by biochemical and super resolution immunofluorescence microscopy methods. Cholesterol depletion, which disrupts rafts, prevented desmosome assembly and adhesion, thus functionally linking rafts to desmosome formation. Interestingly, Dsg3 did not associate with rafts in cells lacking desmosomal proteins. Additionally, PV IgG-induced desmosome disassembly occurred by redistribution of Dsg3 into raft-containing endocytic membrane domains, resulting in cholesterol-dependent loss of adhesion. These findings demonstrate that membrane rafts are required for desmosome assembly and disassembly dynamics, suggesting therapeutic potential for raft targeting agents in desmosomal diseases such as PV.


Nature Methods | 2016

Nanoscale optomechanical actuators for controlling mechanotransduction in living cells.

Zheng Liu; Yang Liu; Yuan Chang; Hamid Reza Seyf; Asegun Henry; Alexa L. Mattheyses; Kevin Yehl; Yun Zhang; Zhuangqun Huang; Khalid Salaita

To control receptor tension optically at the cell surface, we developed an approach involving optomechanical actuator nanoparticles that are controlled with near-infrared light. Illumination leads to particle collapse, delivering piconewton forces to specific cell surface receptors with high spatial and temporal resolution. We demonstrate optomechanical actuation by controlling integrin-based focal adhesion formation, cell protrusion and migration, and T cell receptor activation.


Traffic | 2011

Imaging Single Endocytic Events Reveals Diversity in Clathrin, Dynamin and Vesicle Dynamics

Alexa L. Mattheyses; Claire E. Atkinson; Sanford M. Simon

The dynamics of clathrin‐mediated endocytosis can be assayed using fluorescently tagged proteins and total internal reflection fluorescence microscopy. Many of these proteins, including clathrin and dynamin, are soluble and changes in fluorescence intensity can be attributed either to membrane/vesicle movement or to changes in the numbers of individual molecules. It is important for assays to discriminate between physical membrane events and the dynamics of molecules. Two physical events in endocytosis were investigated: vesicle scission from the plasma membrane and vesicle internalization. Single vesicle analysis allowed the characterization of dynamin and clathrin dynamics relative to scission and internalization. We show that vesicles remain proximal to the plasma membrane for variable amounts of time following scission, and that uncoating of clathrin can occur before or after vesicle internalization. The dynamics of dynamin also vary with respect to scission. Results from assays based on physical events suggest that disappearance of fluorescence from the evanescent field should be re‐evaluated as an assay for endocytosis. These results illustrate the heterogeneity of behaviors of endocytic vesicles and the importance of establishing suitable evaluation criteria for biophysical processes.


Nature Communications | 2016

Regulation of claudin/zonula occludens-1 complexes by hetero-claudin interactions

Barbara Schlingmann; Christian E. Overgaard; Samuel A. Molina; K. Sabrina Lynn; Leslie A. Mitchell; StevenClaude Dorsainvil White; Alexa L. Mattheyses; David M. Guidot; Christopher T. Capaldo; Michael Koval

Claudins are tetraspan transmembrane tight-junction proteins that regulate epithelial barriers. In the distal airspaces of the lung, alveolar epithelial tight junctions are crucial to regulate airspace fluid. Chronic alcohol abuse weakens alveolar tight junctions, priming the lung for acute respiratory distress syndrome, a frequently lethal condition caused by airspace flooding. Here we demonstrate that in response to alcohol, increased claudin-5 paradoxically accompanies an increase in paracellular leak and rearrangement of alveolar tight junctions. Claudin-5 is necessary and sufficient to diminish alveolar epithelial barrier function by impairing the ability of claudin-18 to interact with a scaffold protein, zonula occludens 1 (ZO-1), demonstrating that one claudin affects the ability of another claudin to interact with the tight-junction scaffold. Critically, a claudin-5 peptide mimetic reverses the deleterious effects of alcohol on alveolar barrier function. Thus, claudin controlled claudin-scaffold protein interactions are a novel target to regulate tight-junction permeability.


Cellular logistics | 2015

ROCK1 and ROCK2 inhibition alters dendritic spine morphology in hippocampal neurons

Sharon A. Swanger; Alexa L. Mattheyses; Erik G. Gentry; Jeremy H. Herskowitz

Communication among neurons is mediated through synaptic connections between axons and dendrites, and most excitatory synapses occur on actin-rich protrusions along dendrites called dendritic spines. Dendritic spines are structurally dynamic, and synapse strength is closely correlated with spine morphology. Abnormalities in the size, shape, and number of dendritic spines are prevalent in neurologic diseases, including autism spectrum disorders, schizophrenia, and Alzheimer disease. However, therapeutic targets that influence spine morphology are lacking. Rho-associated coiled-coil containing protein kinases (ROCK) 1 and ROCK2 are potent regulators of the actin cytoskeleton and highly promising drug targets for central nervous system disorders. In this report, we addressed how pharmacologic inhibition of ROCK1 and ROCK2 affects dendritic spine morphology. Hippocampal neurons were transfected with plasmids expressing fluorescently labeled Lifeact, a small actin binding peptide, and then incubated with or without Y-27632, an established pan-ROCK small molecule inhibitor. Using an automated 3D spine morphometry analysis method, we showed that inhibition of ROCK1 and ROCK2 significantly increased the mean protrusion density and significantly reduced the mean protrusion width. A trending increase in mean protrusion length was observed following Y-27632 treatment, and novel effects were observed among spine classes. Exposure to Y-27632 significantly increased the number of filopodia and thin spines, while the numbers of stubby and mushroom spines were similar to mock-treated samples. These findings support the hypothesis that pharmacologic inhibition of ROCK1 and ROCK2 may convey therapeutic benefit for neurologic disorders that feature dendritic spine loss or aberrant structural plasticity.


PLOS ONE | 2014

The ARL2 GTPase is required for mitochondrial morphology, motility, and maintenance of ATP levels.

Laura E. Newman; Chengjing Zhou; Samatha Mudigonda; Alexa L. Mattheyses; Eleonora Paradies; Carlo M.T. Marobbio; Richard A. Kahn

ARF-like 2 (ARL2) is a member of the ARF family and RAS superfamily of regulatory GTPases, predicted to be present in the last eukaryotic common ancestor, and essential in a number of model genetic systems. Though best studied as a regulator of tubulin folding, we previously demonstrated that ARL2 partially localizes to mitochondria. Here, we show that ARL2 is essential to a number of mitochondrial functions, including mitochondrial morphology, motility, and maintenance of ATP levels. We compare phenotypes resulting from ARL2 depletion and expression of dominant negative mutants and use these to demonstrate that the mitochondrial roles of ARL2 are distinct from its roles in tubulin folding. Testing of current models for ARL2 actions at mitochondria failed to support them. Rather, we found that knockdown of the ARL2 GTPase activating protein (GAP) ELMOD2 phenocopies two of three phenotypes of ARL2 siRNA, making it a likely effector for these actions. These results add new layers of complexity to ARL2 signaling, highlighting the need to deconvolve these different cell functions. We hypothesize that ARL2 plays essential roles inside mitochondria along with other cellular functions, at least in part to provide coupling of regulation between these essential cell processes.

Collaboration


Dive into the Alexa L. Mattheyses's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge