Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeremy H. Herskowitz is active.

Publication


Featured researches published by Jeremy H. Herskowitz.


The Journal of Neuroscience | 2013

Pharmacologic inhibition of ROCK2 suppresses amyloid-β production in an Alzheimer's disease mouse model.

Jeremy H. Herskowitz; Yangbo Feng; Alexa L. Mattheyses; Chadwick M. Hales; Lenora Higginbotham; Duc M. Duong; Thomas J. Montine; Juan C. Troncoso; Madhav Thambisetty; Nicholas T. Seyfried; Allan I. Levey; James J. Lah

Alzheimers disease (AD) is the leading cause of dementia and has no cure. Genetic, cell biological, and biochemical studies suggest that reducing amyloid-β (Aβ) production may serve as a rational therapeutic avenue to delay or prevent AD progression. Inhibition of RhoA, a Rho GTPase family member, is proposed to curb Aβ production. However, a barrier to this hypothesis has been the limited understanding of how the principal downstream effectors of RhoA, Rho-associated, coiled-coil containing protein kinase (ROCK) 1 and ROCK2, modulate Aβ generation. Here, we report that ROCK1 knockdown increased endogenous human Aβ production, whereas ROCK2 knockdown decreased Aβ levels. Inhibition of ROCK2 kinase activity, using an isoform-selective small molecule (SR3677), suppressed β-site APP cleaving enzyme 1 (BACE1) enzymatic action and diminished production of Aβ in AD mouse brain. Immunofluorescence and confocal microscopy analyses revealed that SR3677 alters BACE1 endocytic distribution and promotes amyloid precursor protein (APP) traffic to lysosomes. Moreover, SR3677 blocked ROCK2 phosphorylation of APP at threonine 654 (T654); in neurons, T654 was critical for APP processing to Aβ. These observations suggest that ROCK2 inhibition reduces Aβ levels through independent mechanisms. Finally, ROCK2 protein levels were increased in asymptomatic AD, mild cognitive impairment, and AD brains, demonstrating that ROCK2 levels change in the earliest stages of AD and remain elevated throughout disease progression. Collectively, these findings highlight ROCK2 as a mechanism-based therapeutic target to combat Aβ production in AD.


PLOS Pathogens | 2008

The MHV68 M2 Protein Drives IL-10 Dependent B Cell Proliferation and Differentiation

Andrea M. Siegel; Jeremy H. Herskowitz; Samuel H. Speck

Murine gammaherpesvirus 68 (MHV68) establishes long-term latency in memory B cells similar to the human gammaherpesvirus Epstein Barr Virus (EBV). EBV encodes an interleukin-10 (IL-10) homolog and modulates cellular IL-10 expression; however, the role of IL-10 in the establishment and/or maintenance of chronic EBV infection remains unclear. Notably, MHV68 does not encode an IL-10 homolog, but virus infection has been shown to result in elevated serum IL-10 levels in wild-type mice, and IL-10 deficiency results in decreased establishment of virus latency. Here we show that a unique MHV68 latency-associated gene product, the M2 protein, is required for the elevated serum IL-10 levels observed at 2 weeks post-infection. Furthermore, M2 protein expression in primary murine B cells drives high level IL-10 expression along with increased secretion of IL-2, IL-6, and MIP-1α. M2 expression was also shown to significantly augment LPS driven survival and proliferation of primary murine B cells. The latter was dependent on IL-10 expression as demonstrated by the failure of IL10−/− B cells to proliferate in response to M2 protein expression and rescue of M2-associated proliferation by addition of recombinant murine IL-10. M2 protein expression in primary B cells also led to upregulated surface expression of the high affinity IL-2 receptor (CD25) and the activation marker GL7, along with down-regulated surface expression of B220, MHC II, and sIgD. The cells retained CD19 and sIgG expression, suggesting differentiation to a pre-plasma memory B cell phenotype. These observations are consistent with previous analyses of M2-null MHV68 mutants that have suggested a role for the M2 protein in expansion and differentiation of MHV68 latently infected B cells—perhaps facilitating the establishment of virus latency in memory B cells. Thus, while the M2 protein is unique to MHV68, analysis of M2 function has revealed an important role for IL-10 in MHV68 pathogenesis—identifying a strategy that appears to be conserved between at least EBV and MHV68.


Journal of Proteome Research | 2010

Phosphoproteomic analysis reveals site-specific changes in GFAP and NDRG2 phosphorylation in frontotemporal lobar degeneration.

Jeremy H. Herskowitz; Nicholas T. Seyfried; Duc M. Duong; Qiangwei Xia; Howard D. Rees; Marla Gearing; Junmin Peng; James J. Lah; Allan I. Levey

Frontotemporal lobar degeneration (FTLD) is a progressive neurodegenerative disease characterized by behavioral abnormalities, personality changes, language dysfunction, and can co-occur with the development of motor neuron disease. One major pathological form of FTLD is characterized by intracellular deposition of ubiquitinated and phosphorylated TAR DNA binding protein-43 (TDP-43), suggesting that dysregulation in phosphorylation events may contribute to disease progression. However, to date systematic analysis of the phosphoproteome in FTLD brains has not been reported. In this study, we employed immobilized metal affinity chromatography (IMAC) followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) to identify phosphopeptides from FTLD and age-matched control post-mortem human brain tissue. Using this approach, we identified 786 phosphopeptides in frontal cortex (control and FTLD), in which the population of phosphopeptides represented approximately 50% of the total peptides analyzed. Label-free quantification using spectral counts revealed six proteins with significant changes in the FTLD phosphoproteome. N-myc-Downstream regulated gene 2 (NDRG2) and glial fibrillary acidic protein (GFAP) had an increased number of phosphospectra in FTLD, whereas microtubule associated protein 1A (MAP1A), reticulon 4 (RTN4; also referred to as neurite outgrowth inhibitor (Nogo)), protein kinase C gamma (PRKCG), and heat shock protein 90 kDa alpha, class A member 1(HSP90AA1) had significantly fewer phosphospectra compared to control brain. To validate these differences, we examined NDRG2 phosphorylation in FTLD brain by immunoblot analyses, and using a phosphoserine-13 (pSer13) GFAP monoclonal antibody we show an increase in pSer13 GFAP levels by immunoblot concomitant with increased overall GFAP levels in FTLD cases. These data highlight the utility of combining proteomic and phosphoproteomic strategies to characterize post-mortem human brain tissue.


Journal of Virology | 2005

The Murine Gammaherpesvirus 68 M2 Gene Is Required for Efficient Reactivation from Latently Infected B Cells

Jeremy H. Herskowitz; Meagan A. Jacoby; Samuel H. Speck

ABSTRACT Murine gammaherpesvirus 68 (γHV68) infection of mice provides a tractable small-animal model system for assessing the requirements for the establishment and maintenance of gammaherpesvirus latency within the lymphoid compartment. The M2 gene product of γHV68 is a latency-associated antigen with no discernible homology to any known proteins. Here we focus on the requirement for the M2 gene in splenic B-cell latency. Our analyses showed the following. (i) Low-dose (100 PFU) inoculation administered via the intranasal route resulted in a failure to establish splenic B-cell latency at day 16 postinfection. (ii) Increasing the inoculation dose to 4 × 105 PFU administered via the intranasal route partially restored the establishment of B-cell latency at day 16, but no virus reactivation was detected upon explant into tissue cultures. (iii) Although previous data failed to detect a phenotype of the M2 mutant upon high-dose intraperitoneal inoculation, decreasing the inoculation dose to 100 PFU administered intraperitoneally revealed a splenic B-cell latency phenotype at day 16 that was very similar to the phenotype observed upon high-dose intranasal inoculation. (iv) After low-dose intraperitoneal inoculation, fractionated B-cell populations showed that the M2 mutant virus was able to establish latency in surface immunoglobulin D-negative (sIgD−) B cells; by 6 months postinfection, equivalent frequencies of M2 mutant and marker rescue viral genome-positive sIgD− B cells were detected. (v) Like the marker rescue virus, the M2 mutant virus also established latency in splenic naive B cells upon low-dose intraperitoneal inoculation, but there was a significant lag in the decay of this latently infected reservoir compared to that seen with the marker rescue virus. (vi) After low-dose intranasal inoculation, by day 42 postinfection, latency was observed in the spleen, although at a frequency significantly lower than that in the marker rescue virus-infected mice; by 3 months postinfection, nearly equivalent levels of viral genome-positive cells were observed in the spleens of marker rescue virus- and M2 mutant virus-infected mice, and these cells were exclusively sIgD− B cells. Taken together, these data convincingly demonstrate a role for the M2 gene product in reactivation from splenic B cells and also suggest that disruption of the M2 gene leads to dose- and route-specific defects in the efficient establishment of splenic B-cell latency.


Journal of Biological Chemistry | 2011

RHO kinase II phosphorylation of the lipoprotein receptor LR11/sorla alters amyloid-β production

Jeremy H. Herskowitz; Nicholas T. Seyfried; Marla Gearing; Richard A. Kahn; Junmin Peng; Allan I. Levey; James J. Lah

LR11, also known as SorLA, is a mosaic low-density lipoprotein receptor that exerts multiple influences on Alzheimer disease susceptibility. LR11 interacts with the amyloid-β precursor protein (APP) and regulates APP traffic and processing to amyloid-β peptide (Aβ). The functional domains of LR11 suggest that it can act as a cell surface receptor and as an intracellular sorting receptor for trans-Golgi network to endosome traffic. We show that LR11 over-expressed in HEK293 cells is radiolabeled following incubation of cells with [32Pi]orthophosphate. Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) was used to discover putative LR11 interacting kinases. Rho-associated coiled-coil containing protein kinase (ROCK) 2 was identified as a binding partner and a candidate kinase acting on LR11. LR11 and ROCK2 co-immunoprecipitate from post-mortem human brain tissue and drug inhibition of ROCK activity reduces LR11 phosphorylation in vivo. Targeted knockdown of ROCK2 with siRNA decreased LR11 ectodomain shedding while simultaneously increasing intracellular LR11 protein level. Site-directed mutagenesis of serine 2206 in the LR11 cytoplasmic tail reduced LR11 shedding, decreased LR11 phosphorylation in vitro, and abrogated LR11 mediated Aβ reduction. These findings provide direct evidence that LR11 is phosphorylated in vivo and indicate that ROCK2 phosphorylation of LR11 may enhance LR11 mediated processing of APP and amyloid production.


Journal of Proteome Research | 2012

Quantitative analysis of the detergent-insoluble brain proteome in frontotemporal lobar degeneration using SILAC internal standards

Nicholas T. Seyfried; Yair M. Gozal; Laura E. Donovan; Jeremy H. Herskowitz; Eric B. Dammer; Qiangwei Xia; Li Ku; Jianjun Chang; Duc M. Duong; Howard D. Rees; Deborah S. Cooper; Jonathan D. Glass; Marla Gearing; Malú G. Tansey; James J. Lah; Yue Feng; Allan I. Levey; Junmin Peng

A hallmark of neurodegeneration is the aggregation of disease related proteins that are resistant to detergent extraction. In the major pathological subtype of frontotemporal lobar degeneration (FTLD), modified TAR-DNA binding protein 43 (TDP-43), including phosphorylated, ubiquitinated, and proteolytically cleaved forms, is enriched in detergent-insoluble fractions from post-mortem brain tissue. Additional proteins that accumulate in the detergent-insoluble FTLD brain proteome remain largely unknown. In this study, we used proteins from stable isotope-labeled (SILAC) human embryonic kidney 293 cells (HEK293) as internal standards for peptide quantitation across control and FTLD insoluble brain proteomes. Proteins were identified and quantified by liquid-chromatography coupled with tandem mass spectrometry (LC-MS/MS) and 21 proteins were determined to be enriched in FTLD using SILAC internal standards. In parallel, label-free quantification of only the unlabeled brain derived peptides by spectral counts (SC) and G-test analysis identified additional brain-specific proteins significantly enriched in disease. Several proteins determined to be enriched in FTLD using SILAC internal standards were not considered significant by G-test due to their low total number of SC. However, immunoblotting of FTLD and control samples confirmed enrichment of these proteins, highlighting the utility of SILAC internal standard to quantify low-abundance proteins in brain. Of these, the RNA binding protein PTB-associated splicing factor (PSF) was further characterized because of structural and functional similarities to TDP-43. Full-length PSF and shorter molecular weight fragments, likely resulting from proteolytic cleavage, were enriched in FTLD cases. Immunohistochemical analysis of PSF revealed predominately nuclear localization in control and FTLD brain tissue and was not associated with phosphorylated pathologic TDP-43 neuronal inclusions. However, in a subset of FTLD cases, PSF was aberrantly localized to the cytoplasm of oligodendrocytes. These data raise the possibility that PSF directed RNA processes in oligodendrocytes are altered in neurodegenerative disease.


Molecular Biology of the Cell | 2012

GGA1-mediated endocytic traffic of LR11/SorLA alters APP intracellular distribution and amyloid-β production

Jeremy H. Herskowitz; Katrin Offe; Aniruddha Deshpande; Richard A. Kahn; Allan I. Levey; James J. Lah

Defining the cellular pathway(s) by which LR11 modulates amyloid-β peptide production is critical to understanding how changes in LR11 expression affect the progression of Alzheimers disease. These results suggest that endocytic traffic of LR11, facilitated by GGA1, enhances LR11 modulation of amyloid precursor protein processing in a nonamyloidogenic manner.


Proteomics | 2012

Asparaginyl endopeptidase cleaves TDP-43 in brain.

Jeremy H. Herskowitz; Yair M. Gozal; Duc M. Duong; Eric B. Dammer; Marla Gearing; Keqiang Ye; James J. Lah; Junmin Peng; Allan I. Levey; Nicholas T. Seyfried

TAR DNA‐binding protein 43 (TDP‐43) is a nuclear protein involved in RNA splicing and a major protein component in ubiquitin‐positive, tau‐negative inclusions of frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Under disease conditions, TDP‐43 redistributes to the cytoplasm where it can be phosphorylated, ubiquitinated, and proteolytically cleaved. Enzymes responsible for TDP‐43 proteolytic processing in brain remain largely unreported. Using a MS approach, we identified two truncated TDP‐43 peptides, terminating C‐terminal to asparagines 291 (N291) and 306 (N306). The only documented mammalian enzyme capable of cleaving C‐terminal to asparagine is asparaginyl endopeptidase (AEP). TDP‐43‐immunoreactive fragments (∼35 and 32 kDa) predicted to be generated by AEP cleavage at N291 and N306 were observed by Western blot analyses of postmortem frontotemporal lobar degeneration brain tissue and cultured human cells over‐expressing TDP‐43. Studies in vitro determined that AEP can directly cleave TDP‐43 at seven sites, including N291 and N306. Western blots of brain homogenates isolated from AEP‐null mice and wild‐type littermate controls revealed that TDP‐43 proteolytic fragments were substantially reduced in the absence of AEP in vivo. Taken together, we conclude that TDP‐43 is cleaved by AEP in brain. Moreover, these data highlight the utility of combining proteomic strategies in vitro and in vivo to provide insight into TDP‐43 biology that will fuel the design of more detailed models of disease pathogenesis.


Journal of Virological Methods | 2013

AAV2 production with optimized N/P ratio and PEI-mediated transfection results in low toxicity and high titer for in vitro and in vivo applications.

Xinping Huang; Antja-Voy Hartley; Yishi Yin; Jeremy H. Herskowitz; James J. Lah; Kerry J. Ressler

The adeno-associated virus (AAV) is one of the most useful viral vectors for gene delivery for both in vivo and in vitro applications. A variety of methods have been established to produce and characterize recombinant AAV (rAAV) vectors; however most methods are quite cumbersome and obtaining consistently high titer can be problematic. This protocol describes a triple-plasmid co-transfection approach with 25 kDa linear polyethylenimine (PEI) in 293 T cells for the production of AAV serotype 2. Seventy-two hours post-transfection, supernatant and cells were harvested and purified by a discontinuous iodixanol density gradient ultracentrifugation, then dialyzed and concentrated with an Amicon 15 100,000 MWCO concentration unit. To optimize the protocol for AAV2 production using PEI, various N/P ratios and DNA amounts were compared. We found that an N/P ratio of 40 coupled with 1.05 μg DNA per ml of media (21 μg DNA/15 cm dish) was found to produce the highest yields for viral replication and assembly measured multiple ways. The infectious units, as determined by serial dilution, were between 1×10(8) and 2×10(9) IU/ml. The genomic titer of the viral stock was determined by qPCR and ranged from 2×10(12) to 6×10(13) VG/ml. These viral vectors showed high expression both in vivo within the brain and in vitro in cell culture. The use of linear 25 kDa polyethylenamine PEI as a transfection reagent is a simple, more cost-effective, and stable means of high-throughput production of high-titer AAV serotype 2. The use of PEI also eliminates the need to change cell medium post-transfection, lowering cost and workload, while producing high-titer, efficacious AAV2 vectors for routine gene transfer.


Journal of Virology | 2008

Systematic Mutagenesis of the Murine Gammaherpesvirus 68 M2 Protein Identifies Domains Important for Chronic Infection

Jeremy H. Herskowitz; Andrea M. Siegel; Meagan A. Jacoby; Samuel H. Speck

ABSTRACT Murine gammaherpesvirus 68 (MHV68) infection of inbred mice represents a genetically tractable small-animal model for assessing the requirements for the establishment of latency, as well as reactivation from latency, within the lymphoid compartment. By day 16 postinfection, MHV68 latency in the spleen is found in B cells, dendritic cells, and macrophages. However, as with Epstein-Barr virus, by 3 months postinfection MHV68 latency is predominantly found in isotype-switched memory B cells. The MHV68 M2 gene product is a latency-associated antigen with no discernible homology to any known cellular or viral proteins. However, depending on experimental conditions, the M2 protein has been shown to play a critical role in both the efficient establishment of latency in splenic B cells and reactivation from latently infected splenic B cells. Inspection of the sequence of the M2 protein reveals several hallmarks of a signaling molecule, including multiple PXXP motifs and two potential tyrosine phosphorylation sites. Here, we report the generation of a panel of recombinant MHV68 viruses harboring mutations in the M2 gene that disrupt putative functional motifs. Subsequent analyses of the panel of M2 mutant viruses revealed a functionally important cluster of PXXP motifs in the C-terminal region of M2, which have previously been implicated in binding Vav proteins (P. A. Madureira, P. Matos, I. Soeiro, L. K. Dixon, J. P. Simas, and E. W. Lam, J. Biol. Chem. 280:37310-37318, 2005; L. Rodrigues, M. Pires de Miranda, M. J. Caloca, X. R. Bustelo, and J. P. Simas, J. Virol. 80:6123-6135, 2006). Further characterization of two adjacent PXXP motifs in the C terminus of the M2 protein revealed differences in the functions of these domains in M2-driven expansion of primary murine B cells in culture. Finally, we show that tyrosine residues 120 and 129 play a critical role in both the establishment of splenic latency and reactivation from latency upon explant of splenocytes into tissue culture. Taken together, these analyses will aide future studies for identifying M2 interacting partners and B-cell signaling pathways that are manipulated by the M2 protein.

Collaboration


Dive into the Jeremy H. Herskowitz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yangbo Feng

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge