Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexander A. Celik is active.

Publication


Featured researches published by Alexander A. Celik.


Stem Cells International | 2015

HLA-E: Presentation of a Broader Peptide Repertoire Impacts the Cellular Immune Response-Implications on HSCT Outcome.

Thomas Kraemer; Alexander A. Celik; Trevor Huyton; Heike Kunze-Schumacher; Rainer Blasczyk; Christina Bade-Döding

The HLA-E locus encodes a nonclassical class Ib molecule that serves many immune functions from inhibiting NK cells to activating CTLs. Structural analysis of HLA-E/NKG2A complexes visualized fine-tuning of protective immune responses through AA interactions between HLA-E, the bound peptide, and NKG2A/CD94. A loss of cellular protection through abrogation of the HLA-E/NKG2A engagement is dependent on the HLA-E bound peptide. The role of HLA-E in posttransplant outcomes is not well understood but might be attributed to its peptide repertoire. To investigate the self-peptide repertoire of HLA-E∗01:01 in the absence of protective HLA class I signal peptides, we utilized soluble HLA technology in class I negative LCL cells in order to characterize HLA-E∗01:01-bound ligands by mass-spectrometry. To understand the immunological impact of these analyzed ligands on NK cell reactivity, we performed cellular assays. Synthesized peptides were loaded onto recombinant T2 cells expressing HLA-E∗01:01 molecules and applied in cytotoxicity assays using the leukemia derived NK cell line (NKL) as effector. HLA-E in complex with the self-peptides demonstrated a shift towards cytotoxicity and a loss of cell protection. Our data highlights the fact that the HLA-E-peptidome is not as restricted as previously thought and support the suggestion of a posttransplant role for HLA-E.


Immunogenetics | 2016

The diversity of the HLA-E-restricted peptide repertoire explains the immunological impact of the Arg107Gly mismatch.

Alexander A. Celik; Thomas Kraemer; Trevor Huyton; Rainer Blasczyk; Christina Bade-Döding

Human leukocyte antigen (HLA)-E molecules are potent inhibitors of NK cell-mediated killing. Low in polymorphisms, two alleles are widely expressed among diverse populations: HLA-E*01:01 and HLA-E*01:03. Both alleles are distinguished by one SNP resulting in the substitution Arg107Gly. Both alleles present a limited set of peptides derived from class I leader sequences physiologically; however, HLA-E*01:01 presents non-canonical peptides in the absence of HLA class I molecules. To further assess the functional differences between both alleles, we analyzed the peptide repertoire of HLA-E*01:03 by applying soluble HLA technology followed by mass-spectrometric peptide sequencing. HLA-E*01:03 restricted peptides showed a length of 9–17 amino acids and differed in their biophysical properties, no overlap in the peptide repertoire of both allelic variants could be observed; however, both alleles shared marginal peptides from the same proteomic content. Artificial APCs expressing empty HLA-E*01:01 or E*01:03 molecules were generated and stabilized using cognate HLA class I-derived peptide ligands to analyze the impact of residue 107 within the HLA-E heavy chain on the NKG2/CD94 receptor engagement. Differences in peptide stabilization could be translated to the density and half-life time of peptide-HLA-E molecules on the cell surface that subsequently impacted NK cell inhibition as verified by cytotoxicity assays. Taken together, these data illustrate functional differences of HLA-E allelic variants induced by a single amino acid. Furthermore, the function of HLA-E in pathophysiologic situations when the HLA processing machinery is interrupted seems to be more emphasized than previously described, implying a crucial role for HLA-E in tumor or viral immune episodes.


Cancer | 2017

HLA-E allelic genotype correlates with HLA-E plasma levels and predicts early progression in chronic lymphocytic leukemia

Bettina Wagner; Fabiola da Silva Nardi; Sabine Schramm; Thomas Kraemer; Alexander A. Celik; Jan Dürig; Peter A. Horn; Ulrich Dührsen; Holger Nückel; Vera Rebmann

Human leukocyte antigen‐E (HLA‐E) is a nonclassical major histocompatibility complex class I molecule that recently came into sharper focus as a putative marker of advanced tumor stages and disease progression. In solid tumors, increased HLA‐E expression as well as elevated soluble HLA‐E (sHLA‐E) plasma levels are associated with a poor prognosis; however, a role for HLA‐E in hematologic malignancies remains to be established.


Immunogenetics | 2016

Understanding the obstacle of incompatibility at residue 156 within HLA-B*35 subtypes

Trishna Manandhar; Heike Kunze-Schumacher; Trevor Huyton; Alexander A. Celik; Rainer Blasczyk; Christina Bade-Doeding

Defining permissive and non-permissive mismatches for transplantation is a demanding challenge. Single mismatches at amino acid (AA) position 156 of human leucocyte antigen (HLA) class I have been described to alter the peptide motif, repertoire, or mode of peptide loading through differential interaction with the peptide-loading complex. Hence, a single mismatch can tip the balance and trigger an immunological reaction. HLA-B*35 subtypes have been described to evade the loading complex, 156 mismatch distinguishing B*35:01 and B*35:08 changes the binding groove sufficiently to alter the sequence features of the selected peptide repertoire. To understand the functional influences of residue 156 in B*35 variants, we analyzed the peptide binding profiles of HLA-B*35:01156Leu, B*35:08156Arg and B*35:62156Trp. The glycoprotein tapasin represents a target for immune evasions and functions within the multimeric peptide-loading complex to stabilize empty class I molecules and promote acquisition of high-affinity peptides. All three B*35 subtypes showed a tapasin-independent mode of peptide acquisition. HLA-B*35-restricted peptides of low- and high-binding affinities were recovered in the presence and absence of tapasin and subsequently sequenced utilizing mass spectrometry. The peptides derived from B*35 variants differ substantially in their features dependent on their mode of recruitment; all peptides were preferentially anchored by Pro at p2 and Tyr, Phe, Leu, or Lys at pΩ. However, the Trp at residue 156 altered the p2 motif to an Ala and restricted the pΩ to a Trp. Our results highlight the importance of understanding the impact of key micropolymorphism and how a single AA mismatch orchestrates the neighboring AAs.


Human Immunology | 2018

HLA-G mediated immune regulation is impaired by a single amino acid exchange in the alpha 2 domain

Alexander A. Celik; Gwendolin S. Simper; Trevor Huyton; Rainer Blasczyk; Christina Bade-Döding

The trade-off from HLA class I expression to HLA-G expression support the immune evasion of malignant cells. The essential role of the virtually invariant HLA-G in immune tolerance, tumor immunology and its expression frequency in immune privileged tissues is known; however the specific importance of allelic subtypes in immune responses is still not well understood. HLA-G∗01:01, ∗01:03 and ∗01:04 are the most prevalent allelic variants differing at residues 31 and 110, respectively. In cytotoxicity assays applying K562 cells transduced with the HLA-G variants as targets and NK cells as effectors the differential protective potential of HLA-G variants was analyzed. Their peptide profiles were determined utilizing soluble HLA technology. An increased protective potential of HLA-G∗01:04 could be observed. All variants exhibit a unique peptide repertoire with marginal overlap, while G∗01:04 differs in its peptide anchor profile substantially. The functional differences between HLA-G subtypes could be explained by the constraint of the bound peptides, modifying the pHLA-G accessible surface. For the first time a contribution of amino acid alterations within the HLA-G heavy chain for peptide selection and NK cell recognition could be observed. These results will be a step towards understanding immune tolerance and will guide towards personalized immune therapeutic strategies.


Immunogenetics | 2018

HLA-G peptide preferences change in transformed cells: impact on the binding motif

Alexander A. Celik; Gwendolin S. Simper; Wiebke Hiemisch; Rainer Blasczyk; Christina Bade-Döding

HLA-G is known for its strictly restricted tissue distribution. HLA-G expression could be detected in immune privileged organs and many tumor entities such as leukemia, multiple myeloma, and non-Hodgkin and Hodgkin’s lymphoma. This functional variability from mediation of immune tolerance to facilitation of tumor immune evasion strategies might translate to a differential NK cell inhibition between immune-privileged organs and tumor cells. The biophysical invariability of the HLA-G heavy chain and its contrary diversity in immunity implicates a strong influence of the bound peptides on the pHLA-G structure. The aim was to determine if HLA-G displays a tissue-specific peptide repertoire. Therefore, using soluble sHLA-G technology, we analyzed the K562 and HDLM-2 peptide repertoires. Although both cell lines possess a comparable proteome and recruit HLA-G-restricted peptides through the same peptide-loading pathway, the peptide features appear to be cell specific. HDLM-2 derived HLA-G peptides are anchored by an Arg at p1 and K562-derived peptides are anchored by a Lys. At p2, no anchor motif could be determined while peptides were anchored at pΩ with a Leu and showed an auxiliary anchor motif Pro at p3. To appreciate if the peptide anchor alterations are due to a cell-specific differential peptidome, we performed analysis of peptide availability within the different cell types. Yet, the comparison of the cell-specific proteome and HLA-G-restricted ligandome clearly demonstrates a tissue-specific peptide selection by HLA-G molecules. This exclusive and unexpected observation suggests an exquisite immune function of HLA-G.


Clinical & Developmental Immunology | 2018

Carbamazepine-Mediated Adverse Drug Reactions: CBZ-10,11-epoxide but Not Carbamazepine Induces the Alteration of Peptides Presented by HLA-B15:02

Gwendolin S. Simper; Gia-Gia T. Hò; Alexander A. Celik; Trevor Huyton; Joachim Kuhn; Heike Kunze-Schumacher; Rainer Blasczyk; Christina Bade-Döding

Among patients treated with the anticonvulsive and psychotropic drug carbamazepine (CBZ), approximately 10% develop severe and life-threatening adverse drug reactions. These immunological conditions are resolved upon withdrawal of the medicament, suggesting that the drug does not manifest in the body in long term. The HLA allele B∗15:02 has been described to be a genomic biomarker for CBZ-mediated immune reactions. It is not well understood if the immune reactions are triggered by the original drug or by its metabolite carbamazepine-10,11-epoxide (EPX) and how the interaction between the drug and the distinct HLA molecule occurs. Genetically engineered human B-lymphoblastoid cells expressing soluble HLA-B∗15:02 molecules were treated with the drug or its metabolite. Functional pHLA complexes were purified; peptides were eluted and sequenced. Applying mass spectrometric analysis, CBZ and EPX were monitored by analyzing the heavy chain and peptide fractions separately for the presence of the drug. This method enabled the detection of the drug in a biological situation post-pHLA assembly. Both drugs were bound to the HLA-B∗15:02 heavy chain; however, solely EPX altered the peptide-binding motif of B∗15:02-restricted peptides. This observation could be explained through structural insight; EPX binds to the peptide-binding region and alters the biochemical features of the F pocket and thus the peptide motif. Understanding the nature of immunogenic interactions between CBZ and EPX with the HLA immune complex will guide towards effective and safe medications.


Archive | 2018

Peptide Presentation Is the Key to Immunotherapeutical Success

Wiebke C. Abels; Alexander A. Celik; Gwendolin S. Simper; RainerBlasczyk; Christina Bade-Döding


Transfusionsmedizin - Immunhämatologie, Hämotherapie, Immungenetik, Zelltherapie | 2017

Kongressbericht – 43. Tagung der American Society for Histocompatibility and Immunogenetics

Alexander A. Celik; Christina Bade-Döding


Archive | 2017

Physiology and Pathology of Drug Hypersensitivity: Role of Human Leukocyte Antigens

Gwendolin S. Simper; Alexander A. Celik; Rainer Blasczyk Heike Kunze-Schumacher; Christina Bade-Döding

Collaboration


Dive into the Alexander A. Celik's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Holger Nückel

University of Duisburg-Essen

View shared research outputs
Researchain Logo
Decentralizing Knowledge