Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Heike Kunze-Schumacher is active.

Publication


Featured researches published by Heike Kunze-Schumacher.


Stem Cells International | 2015

HLA-E: Presentation of a Broader Peptide Repertoire Impacts the Cellular Immune Response-Implications on HSCT Outcome.

Thomas Kraemer; Alexander A. Celik; Trevor Huyton; Heike Kunze-Schumacher; Rainer Blasczyk; Christina Bade-Döding

The HLA-E locus encodes a nonclassical class Ib molecule that serves many immune functions from inhibiting NK cells to activating CTLs. Structural analysis of HLA-E/NKG2A complexes visualized fine-tuning of protective immune responses through AA interactions between HLA-E, the bound peptide, and NKG2A/CD94. A loss of cellular protection through abrogation of the HLA-E/NKG2A engagement is dependent on the HLA-E bound peptide. The role of HLA-E in posttransplant outcomes is not well understood but might be attributed to its peptide repertoire. To investigate the self-peptide repertoire of HLA-E∗01:01 in the absence of protective HLA class I signal peptides, we utilized soluble HLA technology in class I negative LCL cells in order to characterize HLA-E∗01:01-bound ligands by mass-spectrometry. To understand the immunological impact of these analyzed ligands on NK cell reactivity, we performed cellular assays. Synthesized peptides were loaded onto recombinant T2 cells expressing HLA-E∗01:01 molecules and applied in cytotoxicity assays using the leukemia derived NK cell line (NKL) as effector. HLA-E in complex with the self-peptides demonstrated a shift towards cytotoxicity and a loss of cell protection. Our data highlights the fact that the HLA-E-peptidome is not as restricted as previously thought and support the suggestion of a posttransplant role for HLA-E.


Clinical & Developmental Immunology | 2014

Soluble HLA Technology as a Strategy to Evaluate the Impact of HLA Mismatches

Heike Kunze-Schumacher; Rainer Blasczyk; Christina Bade-Doeding

HLA class I incompatibilities still remain one of the main barriers for unrelated bone marrow transplantation (BMT); hence the molecular understanding of how to mismatch patients and donors and still have successful clinical outcomes will guide towards the future of unrelated BMT. One way to estimate the magnitude of polymorphisms within the PBR is to determine which peptides can be selected by individual HLA alleles and subsequently presented for recognition by T cells. The features (structure, length, and sequence) of different peptides each confer an individual pHLA landscape and thus directly shape the individual immune response. The elution and sequencing of peptides by mass spectrometric analysis enable determining the bona fide repertoire of presented peptides for a given allele. This is an effective and simple way to compare the functions of allelic variants and make a first assessment of their degree of permissivity. We describe the methodology used for peptide sequencing and the limitations of peptide prediction tools compared to experimental methods. We highlight the altered peptide features that are observed between allelic variants and the need to discover the altered peptide repertoire in situations of “artificial” graft versus host disease (GvHD) that occur in HLA-specific hypersensitive immune responses to drugs.


Journal of Stem Cell Research & Therapy | 2014

Differential Impact of HLA-B*44 Allelic Mismaches at Position 156 on Peptide Binding Specificities and T-Cell Diversity

Soumya Badrinath; Trevor Huyton; Heike Kunze-Schumacher; Holger Andreas Elsner; Rainer Blasczyk; Christina Bade-Doeding

The molecular understanding of how we can mismatch patients and donors and still have successful clinical outcomes will help to guide the future of unrelated bone-marrow transplantation. Single amino acid mismatches at position 156 on the alpha 2 helix of B*44 variants have been described to cause immunological episodes. The magnitude of permissivity between B44/156 variants differs from peptide presentation independent of the peptide loading complex (B*44:28) to influencing clinical episodes (B*44:02 vs. B*44:03). We here investigated if the single exchange of an Asp>Glu as occurring in B*44:35 at residue 156 would force an immune response in vitro. We developed an in vitro system by recombinant co-expression of a single membrane-bound allogeneic HLA class I molecule in donor cells and co-incubating these cells with autologous T-cells. This strategy enables the study of single HLA class I mismatches and excludes the influence of minor antigens. We found these T-cells to be able to differentially discriminate between mismatched B*44 subtypes and their micropolymorphism. To understand how certain pHLA landscapes shaping the alloreactive immune response, we sequenced the individual peptides derived from B*44/156 subtypes using LC-ESI-MS/MS technology. Based on the peptide data we modeled the structure of the B*44:35 variant and can describe the unexpected immunological reaction of the mismatched B*44 subtypes through structural manipulation of the heavy chain. The meticulous characterization of peptide-binding profiles for key alleles, as well as the evaluation of T-cell responses and structural analysis in the context of one-allele mismatches will open the door to a new era in bonemarrow transplantation.


Immunogenetics | 2016

Understanding the obstacle of incompatibility at residue 156 within HLA-B*35 subtypes

Trishna Manandhar; Heike Kunze-Schumacher; Trevor Huyton; Alexander A. Celik; Rainer Blasczyk; Christina Bade-Doeding

Defining permissive and non-permissive mismatches for transplantation is a demanding challenge. Single mismatches at amino acid (AA) position 156 of human leucocyte antigen (HLA) class I have been described to alter the peptide motif, repertoire, or mode of peptide loading through differential interaction with the peptide-loading complex. Hence, a single mismatch can tip the balance and trigger an immunological reaction. HLA-B*35 subtypes have been described to evade the loading complex, 156 mismatch distinguishing B*35:01 and B*35:08 changes the binding groove sufficiently to alter the sequence features of the selected peptide repertoire. To understand the functional influences of residue 156 in B*35 variants, we analyzed the peptide binding profiles of HLA-B*35:01156Leu, B*35:08156Arg and B*35:62156Trp. The glycoprotein tapasin represents a target for immune evasions and functions within the multimeric peptide-loading complex to stabilize empty class I molecules and promote acquisition of high-affinity peptides. All three B*35 subtypes showed a tapasin-independent mode of peptide acquisition. HLA-B*35-restricted peptides of low- and high-binding affinities were recovered in the presence and absence of tapasin and subsequently sequenced utilizing mass spectrometry. The peptides derived from B*35 variants differ substantially in their features dependent on their mode of recruitment; all peptides were preferentially anchored by Pro at p2 and Tyr, Phe, Leu, or Lys at pΩ. However, the Trp at residue 156 altered the p2 motif to an Ala and restricted the pΩ to a Trp. Our results highlight the importance of understanding the impact of key micropolymorphism and how a single AA mismatch orchestrates the neighboring AAs.


Clinical & Developmental Immunology | 2014

A Micropolymorphism Altering the Residue Triad 97/114/156 Determines the Relative Levels of Tapasin Independence and Distinct Peptide Profiles for HLA-A ∗ 24 Allotypes

Soumya Badrinath; Heike Kunze-Schumacher; Rainer Blasczyk; Trevor Huyton; Christina Bade-Doeding

While many HLA class I molecules interact directly with the peptide loading complex (PLC) for conventional loading of peptides certain class I molecules are able to present peptides in a way that circumvents the PLC components. We investigated micropolymorphisms at position 156 of HLA-A*24 allotypes and their effects on PLC dependence for assembly and peptide binding specificities. HLA-A*24:06156Trp and HLA-A*24:13156Leu showed high levels of cell surface expression while HLA-A*24:02156Gln was expressed at low levels in tapasin deficient cells. Peptides presented by these allelic variants showed distinct differences in features and repertoire. Immunoprecipitation experiments demonstrated all the HLA-A*24/156 variants to associate at similar levels with tapasin when present. Structurally, HLA-A*24:02 contains the residue triad Met97/His114/Gln156 and a Trp156 or Leu156 polymorphism provides tapasin independence by stabilizing these triad residues, thus generating an energetically stable and a more peptide receptive environment. Micropolymorphisms at position 156 can influence the generic peptide loading pathway for HLA-A*24 by altering their tapasin dependence for peptide selection. The trade-off for this tapasin independence could be the presentation of unusual ligands by these alleles, imposing significant risk following hematopoietic stem cell transplantation (HSCT).


Immunogenetics | 2018

The polymorphism at residue 156 determines the HLA-B*35 restricted peptide repertoire during HCMV infection

Wiebke C. Abels; Trishna Manandhar; Heike Kunze-Schumacher; Rainer Blasczyk; Christina Bade-Döding

Peptide selection in infected cells is not fully understood yet, but several indications point to the fact that there are differences to uninfected cells, especially in productive HCMV infection, since HCMV evolved various strategies to disable the hosts immune system, including presentation of peptide-HLA complexes to immune effector cells. Therefore, peptide predictions for specific HLA alleles are limited in these cases and the naturally presented peptide repertoire of HCMV-infected cells is of major interest to optimize adoptive T cell therapies. The allotypes HLA-B*35:01 and B*35:08 differ at a single amino acid at position 156 and have been described to differ in their peptide features and in their association with the peptide loading complex. Virus specific T cells recognizing the allelic pHLA-B*35 complexes could be detected, indicating a significant role of this HLA subtypes in viral immunity. However, naturally selected and presented viral peptides have not been described so far. In this study, we analyzed the peptide binding repertoire for HLA-B*35:01 and HLA-B*35:08 in HCMV-infected cells. The isolated peptides from both allelic subtypes were of extraordinary length, however differed in their features, origin, and sequence. For these HCMV-originated peptides, no overlap in the peptide repertoire could be observed between the two allelic subtypes. These findings reveal the discrepancies between predicted and naturally presented immunogenic epitopes and support the need of comprehensive peptide recruitment data for personalized and effective cellular therapies.


Clinical & Developmental Immunology | 2018

Carbamazepine-Mediated Adverse Drug Reactions: CBZ-10,11-epoxide but Not Carbamazepine Induces the Alteration of Peptides Presented by HLA-B15:02

Gwendolin S. Simper; Gia-Gia T. Hò; Alexander A. Celik; Trevor Huyton; Joachim Kuhn; Heike Kunze-Schumacher; Rainer Blasczyk; Christina Bade-Döding

Among patients treated with the anticonvulsive and psychotropic drug carbamazepine (CBZ), approximately 10% develop severe and life-threatening adverse drug reactions. These immunological conditions are resolved upon withdrawal of the medicament, suggesting that the drug does not manifest in the body in long term. The HLA allele B∗15:02 has been described to be a genomic biomarker for CBZ-mediated immune reactions. It is not well understood if the immune reactions are triggered by the original drug or by its metabolite carbamazepine-10,11-epoxide (EPX) and how the interaction between the drug and the distinct HLA molecule occurs. Genetically engineered human B-lymphoblastoid cells expressing soluble HLA-B∗15:02 molecules were treated with the drug or its metabolite. Functional pHLA complexes were purified; peptides were eluted and sequenced. Applying mass spectrometric analysis, CBZ and EPX were monitored by analyzing the heavy chain and peptide fractions separately for the presence of the drug. This method enabled the detection of the drug in a biological situation post-pHLA assembly. Both drugs were bound to the HLA-B∗15:02 heavy chain; however, solely EPX altered the peptide-binding motif of B∗15:02-restricted peptides. This observation could be explained through structural insight; EPX binds to the peptide-binding region and alters the biochemical features of the F pocket and thus the peptide motif. Understanding the nature of immunogenic interactions between CBZ and EPX with the HLA immune complex will guide towards effective and safe medications.


Human Immunology | 2016

OR9 A single amino acid residue within the HLA-B*35 heavy chain determines the immune dominance of peptides during hcmv infection

Wiebke C. Abels; Heike Kunze-Schumacher; Trishna Manandhar; Rainer Blasczyk; Christina Bade-Doeding


Human Immunology | 2016

OR11 HLA linked pharmacogenomics: Carbamazepine alteration of the HLA-A∗31:01 peptide binding groove

Heike Kunze-Schumacher; Lea Beth; Alexander A. Celik; Trevor Huyton; Rainer Blasczyk; Christina Bade-Doeding


Human Immunology | 2014

OR20: THE MECHANISTIC DIFFERENCES IN HLA-ASSOCIATED DRUG HYPERSENSITIVITY

Heike Kunze-Schumacher; Huyton Trevor; Rainer Blasczyk; Christina Bade-Doeding

Collaboration


Dive into the Heike Kunze-Schumacher's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge