Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexander Apolonskiy is active.

Publication


Featured researches published by Alexander Apolonskiy.


New Journal of Physics | 2007

Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broadband soft-x-ray harmonic continua

Adrian L. Cavalieri; Eleftherios Goulielmakis; Balint Horvath; Wolfram Helml; Martin Schultze; Markus Fieß; Volodymyr Pervak; Laszlo Veisz; Vladislav S. Yakovlev; Matthias Uiberacker; Alexander Apolonskiy; Ferenc Krausz; Reinhard Kienberger

We demonstrate sub-millijoule-energy, sub-4?fs-duration near-infrared laser pulses with a controlled waveform comprised of approximately 1.5 optical cycles within the full-width at half-maximum (FWHM) of their temporal intensity profile. We further demonstrate the utility of these pulses for producing high-order harmonic continua of unprecedented bandwidth at photon energies around 100?eV. Ultra-broadband coherent continua extending from 90?eV to more than 130?eV with smooth spectral intensity distributions that exhibit dramatic, never-before-observed sensitivity to the carrier-envelope offset (CEO) phase of the driver laser pulse were generated. These results suggest the feasibility of sub-100-attosecond XUV pulse generation for attosecond spectroscopy in the 100?eV range, and of a simple yet highly sensitive on-line CEO phase detector with sub-50-ms response time.


Optics Express | 2008

High-dispersive mirrors for femtosecond lasers

Volodymyr Pervak; Catherine Y. Teisset; Atsushi Sugita; Sergei Naumov; Ferenc Krausz; Alexander Apolonskiy

We report on the development of highly dispersive mirrors for chirped-pulse oscillators (CPO) and amplifiers (CPA). In this proof-of-concept study, we demonstrate the usability of highly dispersive multilayer mirrors for high-energy femtosecond oscillators, namely for i) a chirped-pulse Ti:Sa oscillator and ii) an Yb:YAG disk oscillator. In both cases a group delay dispersion (GDD) of the order of 2x10(4) fs(2) was introduced, accompanied with an overall transmission loss as low as approximately 2 per cent. This unprecedented combination of high dispersion and low loss over a sizeable bandwidth with multilayer structures opens the prospects for femtosecond CPA systems equipped with a compact, alignment-insensitive all-mirror compressors providing compensation of GDD as well as higher-order dispersion.


Optics Letters | 2014

Energy scaling of Kerr-lens mode-locked thin-disk oscillators

Jonathan Brons; Vladimir Pervak; Elena Fedulova; Dominik Bauer; Dirk Sutter; Vladimir L. Kalashnikov; Alexander Apolonskiy; Oleg Pronin; Ferenc Krausz

Geometric scaling of a Kerr-lens mode-locked Yb:YAG thin-disk oscillator yields femtosecond pulses with an average output power of 270 W. The scaled system delivers femtosecond (210-330 fs) pulses with a peak power of 38 MW. These values of average and peak power surpass the performance of any previously reported femtosecond laser oscillator operated in atmospheric air.


Optics Letters | 2007

Dispersion control over the ultraviolet-visible-near-infrared spectral range with HfO2/SiO2-chirped dielectric multilayers

Volodymyr Pervak; Ferenc Krausz; Alexander Apolonskiy

We report the first realization, to the best of our knowledge, of a chirped multilayer dielectric mirror providing dispersion control over the spectral range of 300-900 nm and the first use of hafnium oxide in a chirped mirror. The technology opens the door to the reliable and reproducible generation of monocycle laser pulses in the blue-violet spectral range, will benefit the development of optical waveform and frequency-comb synthesizers over the ultraviolet-visible-near-infrared spectral range, and permits the development of ultrabroadband-chirped multilayers for high-power applications.


Optics Letters | 2012

Long-term carrier-envelope-phase-stable few-cycle pulses by use of the feed-forward method

Fabian Lücking; Andreas Assion; Alexander Apolonskiy; Ferenc Krausz; Günter Steinmeyer

The feed-forward technique has recently revolutionized carrier-envelope phase (CEP) stabilization, enabling unprecedented values of residual phase jitter. Nevertheless, its demonstrations have hitherto remained in a proof-of-principle state. Here we show that pulse quality and power issues can be solved, leading to few-cycle pulses with good beam quality. Making use of stable interferometers, we achieve day-long CEP-stable operation of the setup. Out-of-loop RMS phase noise amounts to less than 30 mrad in 20 s, with more than 24 h of CEP-locked operation being demonstrated.


Optics Express | 2013

Large-mode enhancement cavities

Henning Carstens; Simon Holzberger; Jan Kaster; Johannes Weitenberg; V. Pervak; Alexander Apolonskiy; Ernst E. Fill; Ferenc Krausz; Ioachim Pupeza

In passive enhancement cavities the achievable power level is limited by mirror damage. Here, we address the design of robust optical resonators with large spot sizes on all mirrors, a measure that promises to mitigate this limitation by decreasing both the intensity and the thermal gradient on the mirror surfaces. We introduce a misalignment sensitivity metric to evaluate the robustness of resonator designs. We identify the standard bow-tie resonator operated close to the inner stability edge as the most robust large-mode cavity and implement this cavity with two spherical mirrors with 600 mm radius of curvature, two plane mirrors and a round trip length of 1.2 m, demonstrating a stable power enhancement of near-infrared laser light by a factor of 2000. Beam radii of 5.7 mm × 2.6 mm (sagittal × tangential 1/e(2) intensity radius) on all mirrors are obtained. We propose a simple all-reflective ellipticity compensation scheme. This will enable a significant increase of the attainable power and intensity levels in enhancement cavities.


Optics Express | 2009

Chirped-pulse amplification of laser pulses with dispersive mirrors

Volodymyr Pervak; Izhar Ahmad; Sergei A. Trushin; Zsuzsanna Major; Alexander Apolonskiy; Stefan Karsch; Ferenc Krausz

We report a novel implementation of chirped-pulse amplification (CPA) by dominantly using dispersive multilayer mirrors for chirp control. Our prototyp dispersive-mirror (DMC) compressor has been designed for a kHz Ti:sapphire amplifier and yielded--in a proof-of-concept study--millijoule-energy, sub-20-fs, 790-nm laser pulses with an overall throughput of approximately 90% and unprecedented spatio-temporal quality. Dispersive-mirror-based CPA permits a dramatic simplification of high-power lasers and affords promise for their advancement to shorter pulse durations, higher peak powers, and higher average powers with user-friendly systems.


Optics Express | 2010

Energy scalability of mode-locked oscillators: a completely analytical approach to analysis

Vladimir L. Kalashnikov; Alexander Apolonskiy

A completely analytical approach to analysis of energy-scalable ultrashort-pulse oscillators operating in both normal- and anomalous-dispersion regimes is developed. The theory, based on the approximated solutions of the generalized complex nonlinear Ginzburg-Landau equation allows the problem to be reduced to a purely algebraic model, so that the oscillator characteristics are easy to trace and are completely characterized by only two parameters defining the so-called master diagram of the pulse energy scalability. The proposed theory covers all types of energy-scalable oscillators: all-normal-dispersion fiber, chirped-pulse and thin-disk solid-state ones and is validated by numerical simulations.


Optics Letters | 2012

High-power Kerr-lens mode-locked Yb:YAG thin-disk oscillator in the positive dispersion regime

Oleg Pronin; Jonathan Brons; Christian Grasse; V. Pervak; G. Böhm; Marcus C. Amann; Alexander Apolonskiy; Vladimir L. Kalashnikov; Ferenc Krausz

We demonstrate a self-starting Kerr-lens mode-locked (KLM) Yb:YAG thin-disk oscillator operating in the regime of positive intracavity group-delay dispersion (GDD). It delivers 1.7 ps pulses at an average power of 17 W and a repetition rate of 40 MHz. Dispersive mirrors compress the pulses to a duration of 190 fs (assuming sech2 shape; Fourier limit: 150 fs) at an average power level of 11 W. To our knowledge, this is the first KLM thin-disk oscillator with positive GDD. Output powers of up to 30 W were achieved with an increased output coupler transmission and intracavity GDD. We demonstrate increase of the pulse energy with increasing positive intracavity GDD, limited by difficulties in initiating mode-locking.


Optics Express | 2007

Chirped mirrors with low dispersion ripple

Volodymyr Pervak; Sergei Naumov; Ferenc Krausz; Alexander Apolonskiy

We demonstrate a chirped dielectric multilayer mirror (CM) with controlled reflectivity and dispersion in the wavelength range 760-840 nm. It exhibits a reflectivity of >99.9% and a mean group delay dispersion (GDD) of about -30 fs(2) with a theoretical GDD ripple of less than 0.5 fs(2) in the working spectral range. Deviations of the measured GDD from the calculated one are restricted to less than +/- 3 fs(2), limited by our measurement system. Simulations reveal that a dispersive delay line composed of 120 bounces off these mirrors introduces negligible distortion to a femtosecond pulse and largely preserves its contrast. The mirrors constitute an ideal tool for precision intracavity or extracavity dispersion control in the range of several thousand fs(2), particularly if pulses with high contrast are to be generated.

Collaboration


Dive into the Alexander Apolonskiy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vladimir L. Kalashnikov

Vienna University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge