Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexander D. Borowsky is active.

Publication


Featured researches published by Alexander D. Borowsky.


Nature | 2004

MYC inactivation uncovers pluripotent differentiation and tumour dormancy in hepatocellular cancer

Catherine M. Shachaf; Constadina Arvanitis; Åsa Karlsson; Shelly Beer; Stefanie Mandl; Michael H. Bachmann; Alexander D. Borowsky; Boris H. Ruebner; Robert D. Cardiff; Qiwei Yang; J. Michael Bishop; Christopher H. Contag; Dean W. Felsher

Hepatocellular carcinoma is generally refractory to clinical treatment. Here, we report that inactivation of the MYC oncogene is sufficient to induce sustained regression of invasive liver cancers. MYC inactivation resulted en masse in tumour cells differentiating into hepatocytes and biliary cells forming bile duct structures, and this was associated with rapid loss of expression of the tumour marker α-fetoprotein, the increase in expression of liver cell markers cytokeratin 8 and carcinoembryonic antigen, and in some cells the liver stem cell marker cytokeratin 19. Using in vivo bioluminescence imaging we found that many of these tumour cells remained dormant as long as MYC remain inactivated; however, MYC reactivation immediately restored their neoplastic features. Using array comparative genomic hybridization we confirmed that these dormant liver cells and the restored tumour retained the identical molecular signature and hence were clonally derived from the tumour cells. Our results show how oncogene inactivation may reverse tumorigenesis in the most clinically difficult cancers. Oncogene inactivation uncovers the pluripotent capacity of tumours to differentiate into normal cellular lineages and tissue structures, while retaining their latent potential to become cancerous, and hence existing in a state of tumour dormancy.


Molecular & Cellular Proteomics | 2007

A Serum Glycomics Approach to Breast Cancer Biomarkers

Crystal Kirmiz; Bensheng Li; Hyun Joo An; Brian H. Clowers; Helen K. Chew; Kit S. Lam; Anthony Ferrige; Robert Alecio; Alexander D. Borowsky; Shola Sulaimon; Carlito B. Lebrilla; Suzanne Miyamoto

Because the glycosylation of proteins is known to change in tumor cells during the development of breast cancer, a glycomics approach is used here to find relevant biomarkers of breast cancer. These glycosylation changes are known to correlate with increasing tumor burden and poor prognosis. Current antibody-based immunochemical tests for cancer biomarkers of ovarian (CA125), breast (CA27.29 or CA15-3), pancreatic, gastric, colonic, and carcinoma (CA19-9) target highly glycosylated mucin proteins. However, these tests lack the specificity and sensitivity for use in early detection. This glycomics approach to find glycan biomarkers of breast cancer involves chemically cleaving oligosaccharides (glycans) from glycosylated proteins that are shed or secreted by breast cancer tumor cell lines. The resulting free glycan species are analyzed by MALDI-FT-ICR MS. Further structural analysis of the glycans can be performed in FTMS through the use of tandem mass spectrometry with infrared multiphoton dissociation. Glycan profiles were generated for each cell line and compared. These methods were then used to analyze sera obtained from a mouse model of breast cancer and a small number of serum samples obtained from human patients diagnosed with breast cancer or patients with no known history of breast cancer. In addition to the glycosylation changes detected in mice as mouse mammary tumors developed, glycosylation profiles were found to be sufficiently different to distinguish patients with cancer from those without. Although the small number of patient samples analyzed so far is inadequate to make any legitimate claims at this time, these promising but very preliminary results suggest that glycan profiles may contain distinct glycan biomarkers that may correspond to glycan “signatures of cancer.”


Proceedings of the National Academy of Sciences of the United States of America | 2006

Sphingosine-1-phosphate lyase potentiates apoptosis via p53- and p38-dependent pathways and is down-regulated in colon cancer

Babak Oskouian; Prathap Sooriyakumaran; Alexander D. Borowsky; Angelina Crans; Lisa Dillard-Telm; Yuen Yee Tam; Padmavathi Bandhuvula; Julie D. Saba

Sphingolipid metabolites such as sphingosine-1-phosphate (S1P) and ceramide modulate apoptosis during development and in response to stress. In general, ceramide promotes apoptosis, whereas S1P stimulates cell proliferation and protects against apoptosis. S1P is irreversibly degraded by the enzyme S1P lyase (SPL). In this study, we show a crucial role for SPL in mediating cellular responses to stress. SPL expression in HEK293 cells potentiated apoptosis in response to stressful stimuli including DNA damage. This effect seemed to be independent of ceramide generation but required SPL enzymatic activity and the actions of p38 MAP kinase, p53, p53-inducible death domain protein (PIDD), and caspase-2 as shown by molecular and chemical inhibition of each of these targets. Further, SPL expression led to constitutive activation of p38. Endogenous SPL expression was induced by DNA damage in WT cells, whereas SPL knockdown diminished apoptotic responses. Importantly, SPL expression was significantly down-regulated in human colon cancer tissues in comparison with normal adjacent tissues, as determined by quantitative real-time PCR (Q-PCR) and immunohistochemical analysis. Down-regulation of S1P phosphatases was also observed, suggesting that colon cancer cells manifest a block in S1P catabolism. In addition, SPL expression and activity were down-regulated in adenomatous lesions of the Min mouse model of intestinal tumorigenesis. Taken together, these results indicate that endogenous SPL may play a physiological role in stress-induced apoptosis and provide an example of altered SPL expression in a human tumor. Our findings suggest that genetic or epigenetic changes affecting intestinal S1P metabolism may correlate with and potentially contribute to carcinogenesis.


Molecular & Cellular Proteomics | 2011

High-mannose glycans are elevated during breast cancer progression

Maria Lorna A. De Leoz; Lawrence J. T. Young; Hyun Joo An; Scott R. Kronewitter; Jae-Han Kim; Suzanne Miyamoto; Alexander D. Borowsky; Helen K. Chew; Carlito B. Lebrilla

Alteration in glycosylation has been observed in cancer. However, monitoring glycosylation changes during breast cancer progression is difficult in humans. In this study, we used a well-characterized transplantable breast tumor mouse model, the mouse mammary tumor virus-polyoma middle T antigen, to observe early changes in glycosylation. We have previously used the said mouse model to look at O-linked glycosylation changes with breast cancer. In this glycan biomarker discovery study, we examined N-linked glycan variations during breast cancer progression of the mouse model but this time doubling the number of mice and blood draw points. N-glycans from total mouse serum glycoproteins were profiled using matrix-assisted laser desorption/ionization Fourier transform-ion cyclotron resonance mass spectrometry at the onset, progression, and removal of mammary tumors. We observed four N-linked glycans, m/z 1339.480 (Hex3HexNAc), 1485.530 (Hex3HexNAc4Fuc), 1809.639 (Hex5HexNAc4Fuc), and 1905.630 (Man9), change in intensity in the cancer group but not in the control group. In a separate study, N-glycans from total human serum glycoproteins of breast cancer patients and controls were also profiled. Analysis of human sera using an internal standard showed the alteration of the low-abundant high-mannose glycans, m/z 1419.475, 1581.528, 1743.581, 1905.634 (Man6–9), in breast cancer patients. A key observation was the elevation of a high-mannose type glycan containing nine mannoses, Man9, m/z 1905.630 in both mouse and human sera in the presence of breast cancer, suggesting an incompletion of the glycosylation process that normally trims back Man9 to produce complex and hybrid type oligosaccharides.


Cancer Research | 2013

Animal Models of Human Prostate Cancer: The Consensus Report of the New York Meeting of the Mouse Models of Human Cancers Consortium Prostate Pathology Committee

Michael Ittmann; Jiaoti Huang; Enrico Radaelli; Philip L. Martin; Sabina Signoretti; Ruth Sullivan; Brian W. Simons; Jerrold M. Ward; Brian D. Robinson; Gerald C. Chu; Massimo Loda; George Thomas; Alexander D. Borowsky; Robert D. Cardiff

Animal models, particularly mouse models, play a central role in the study of the etiology, prevention, and treatment of human prostate cancer. While tissue culture models are extremely useful in understanding the biology of prostate cancer, they cannot recapitulate the complex cellular interactions within the tumor microenvironment that play a key role in cancer initiation and progression. The National Cancer Institute (NCI) Mouse Models of Human Cancers Consortium convened a group of human and veterinary pathologists to review the current animal models of prostate cancer and make recommendations about the pathologic analysis of these models. More than 40 different models with 439 samples were reviewed, including genetically engineered mouse models, xenograft, rat, and canine models. Numerous relevant models have been developed over the past 15 years, and each approach has strengths and weaknesses. Analysis of multiple genetically engineered models has shown that reactive stroma formation is present in all the models developing invasive carcinomas. In addition, numerous models with multiple genetic alterations display aggressive phenotypes characterized by sarcomatoid carcinomas and metastases, which is presumably a histologic manifestation of epithelial-mesenchymal transition. The significant progress in development of improved models of prostate cancer has already accelerated our understanding of the complex biology of prostate cancer and promises to enhance development of new approaches to prevention, detection, and treatment of this common malignancy.


Cancer Cell | 2010

Siah2-Dependent Concerted Activity of HIF and FoxA2 Regulates Formation of Neuroendocrine Phenotype and Neuroendocrine Prostate Tumors

Jianfei Qi; Koh Nakayama; Robert D. Cardiff; Alexander D. Borowsky; Karen L. Kaul; Roy Williams; Stan Krajewski; Dan Mercola; Philip M. Carpenter; David Bowtell; Ze'ev Ronai

Neuroendocrine (NE) phenotype, seen in >30% of prostate adenocarcinomas (PCa), and NE prostate tumors are implicated in aggressive prostate cancer. Formation of NE prostate tumors in the TRAMP mouse model was suppressed in mice lacking the ubiquitin ligase Siah2, which regulates HIF-1alpha availability. Cooperation between HIF-1alpha and FoxA2, a transcription factor expressed in NE tissue, promotes recruitment of p300 to transactivate select HIF-regulated genes, Hes6, Sox9, and Jmjd1a. These HIF-regulated genes are highly expressed in metastatic PCa and required for hypoxia-mediated NE phenotype, metastasis in PCa, and the formation of NE tumors. Tissue-specific expression of FoxA2 combined with Siah2-dependent HIF-1alpha availability enables a transcriptional program required for NE prostate tumor development and NE phenotype in PCa.


Clinical & Experimental Metastasis | 2005

Syngeneic mouse mammary carcinoma cell lines: Two closely related cell lines with divergent metastatic behavior

Alexander D. Borowsky; Ruria Namba; Lawrence J. T. Young; Kent W. Hunter; J. Graeme Hodgson; Clifford G. Tepper; Erik T. McGoldrick; William J. Muller; Robert D. Cardiff; Jeffrey P. Gregg

Two cell lines, Met-1fvb2 and DB-7fvb2, with different metastatic potential, were derived from mammary carcinomas in FVB/N-Tg(MMTV-PyVmT) and FVB/N-Tg(MMTV-PyVmTY315F/Y322F) mice, transplanted into syngeneic FVB/N hosts and characterized. The lines maintain a stable morphological and biological phenotype after multiple rounds of in vitro culture and in vivo transplantation. The Met-1fvb2 line derived from a FVB/N-Tg(MMTV-PyVmT) tumor exhibits invasive growth and 100% metastases when transplanted into the females FVB/N mammary fat pad. The DB-7fvb2 line derived from the FVB/N-Tg(MMTV-PyVmTY315F/Y322F) with a “double base” modification at Y315F/Y322F exhibits more rapid growth when transplanted into the mammary fat pad, but a lower rate of metastasis (17%). The Met1fvb2 cells show high activation of AKT, while DB-7fvb2 cells show very low levels of AKT activation. The DNA content and gene expression levels of both cell lines are stable over multiple generations. Therefore, these two cell lines provide a stable, reproducible resource for the study of metastasis modulators, AKT molecular pathway interactions, and gene target and marker discovery.


Cancer Cell | 2011

Radiation Acts on the Microenvironment to Affect Breast Carcinogenesis by Distinct Mechanisms that Decrease Cancer Latency and Affect Tumor Type

David H. Nguyen; Hellen A. Oketch-Rabah; Irineu Illa-Bochaca; Felipe C. Geyer; Jorge S. Reis-Filho; Jian Hua Mao; Shraddha A. Ravani; Jiri Zavadil; Alexander D. Borowsky; D. Joseph Jerry; Karen A. Dunphy; Jae Hong Seo; Sandra Z. Haslam; Daniel Medina; Mary Helen Barcellos-Hoff

Tissue microenvironment is an important determinant of carcinogenesis. We demonstrate that ionizing radiation, a known carcinogen, affects cancer frequency and characteristics by acting on the microenvironment. Using a mammary chimera model in which an irradiated host is transplanted with oncogenic Trp53 null epithelium, we show accelerated development of aggressive tumors whose molecular signatures were distinct from tumors arising in nonirradiated hosts. Molecular and genetic approaches show that TGFβ mediated tumor acceleration. Tumor molecular signatures implicated TGFβ, and genetically reducing TGFβ abrogated the effect on latency. Surprisingly, tumors from irradiated hosts were predominantly estrogen receptor negative. This effect was TGFβ independent and linked to mammary stem cell activity. Thus, the irradiated microenvironment affects latency and clinically relevant features of cancer through distinct and unexpected mechanisms.


Cancer Research | 2010

ANCCA/ATAD2 Overexpression Identifies Breast Cancer Patients with Poor Prognosis, Acting to Drive Proliferation and Survival of Triple-Negative Cells through Control of B-Myb and EZH2

Ekaterina V. Kalashnikova; Alexey S. Revenko; Abigael T. Gemo; Nicholas P Andrews; Clifford G. Tepper; June X. Zou; Robert D. Cardiff; Alexander D. Borowsky; Hong Wu Chen

Chromatin coregulators are important factors in tumorigenesis and cancer progression. ANCCA is an AAA+ ATPase and a bromodomain-containing nuclear coactivator for the estrogen and androgen receptors that is crucial for assembly of chromatin-modifying complexes and proliferation of hormone-responsive cancer cells. In this study, we show that ANCCA is overexpressed in >70% of breast tumors and that its high protein level correlates well with tumor histologic grades (P<0.0001), highlighting ANCCA as a prognostic factor for poor overall survival and disease recurrence. Strikingly, high-level ANCCA correlated with triple-negative tumors that represent highly aggressive disease. Analysis of ANCCA transcript levels in multiple expression profiles of breast cancer identified ANCCA as a common signature gene, indicating that elevated transcripts also strongly correlate with tumor metastasis and poor survival. Biological and mechanistic investigations revealed that ANCCA is crucial for proliferation and survival of triple-negative/basal-like cancer cells and that it controls the expression of B-Myb, histone methyltransferase EZH2, and an Rb-E2F core program for proliferation, along with a subset of key mitotic kinesins and cell survival genes (IRS2, VEGF, and Akt1). In particular, ANCCA overexpression correlated strongly with EZH2 in tumors. Our results suggest that ANCCA may integrate multiple oncogenic programs in breast cancer, serving in particular as a prognostic marker and a therapeutic target for triple-negative cancers.


The Journal of Nuclear Medicine | 2009

Initial Characterization of a Dedicated Breast PET/CT Scanner During Human Imaging

Spencer L. Bowen; Yibao Wu; Abhijit J. Chaudhari; Lin Fu; Nathan J. Packard; George Burkett; Kai Yang; Karen K. Lindfors; David K. Shelton; Rosalie J. Hagge; Alexander D. Borowsky; Steve R. Martinez; Jinyi Qi; John M. Boone; Simon R. Cherry; Ramsey D. Badawi

We have constructed a dedicated breast PET/CT scanner capable of high-resolution functional and anatomic imaging. Here, we present an initial characterization of scanner performance during patient imaging. Methods: The system consisted of a lutetium oxyorthosilicate–based dual–planar head PET camera (crystal size, 3 × 3 × 20 mm) and 768-slice cone-beam CT. The position of the PET heads (separation and height) could be adjusted for varying breast dimensions. For scanning, the patient lay prone on a specialized bed and inserted a single pendent breast through an aperture in the table top. Compression of the breast as used in mammography is not required. PET and CT systems rotate in the coronal plane underneath the patient sequentially to collect fully tomographic datasets. PET images were reconstructed with the fully 3-dimensional maximum a posteriori method, and CT images were reconstructed with the Feldkamp algorithm, then spatially registered and fused for display. Phantom scans were obtained to assess the registration accuracy between PET and CT images and the influence of PET electronics and activity on CT image quality. We imaged 4 women with mammographic findings highly suggestive of breast cancer (breast imaging reporting and data system, category 5) in an ongoing clinical trial. Patients were injected with 18F-FDG and imaged for 12.5 min per breast. From patient data, noise-equivalent counting rates and the singles-to-trues ratio (a surrogate for the randoms fraction) were calculated. Results: The average registration error between PET and CT images was 0.18 mm. PET electronics and activity did not significantly affect CT image quality. For the patient trial, biopsy-confirmed cancers were visualized on dedicated breast PET/CT on all patient scans, including the detection of ductal carcinoma in situ in 1 case. The singles-to-trues ratio was found to be inversely correlated with breast volume in the field of view, suggesting that larger breasts trend toward increased noise-equivalent counting rates for all other things equal. Conclusion: Scanning of the uncompressed breast with dedicated breast PET/CT can accurately visualize suspected lesions in 3 dimensions.

Collaboration


Dive into the Alexander D. Borowsky's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bahram Parvin

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lj Esserman

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge