Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexander Dobin is active.

Publication


Featured researches published by Alexander Dobin.


Bioinformatics | 2013

STAR: ultrafast universal RNA-seq aligner

Alexander Dobin; Carrie A. Davis; Felix Schlesinger; Jorg Drenkow; Chris Zaleski; Sonali Jha; Philippe Batut; Mark Chaisson; Thomas R. Gingeras

MOTIVATION Accurate alignment of high-throughput RNA-seq data is a challenging and yet unsolved problem because of the non-contiguous transcript structure, relatively short read lengths and constantly increasing throughput of the sequencing technologies. Currently available RNA-seq aligners suffer from high mapping error rates, low mapping speed, read length limitation and mapping biases. RESULTS To align our large (>80 billon reads) ENCODE Transcriptome RNA-seq dataset, we developed the Spliced Transcripts Alignment to a Reference (STAR) software based on a previously undescribed RNA-seq alignment algorithm that uses sequential maximum mappable seed search in uncompressed suffix arrays followed by seed clustering and stitching procedure. STAR outperforms other aligners by a factor of >50 in mapping speed, aligning to the human genome 550 million 2 × 76 bp paired-end reads per hour on a modest 12-core server, while at the same time improving alignment sensitivity and precision. In addition to unbiased de novo detection of canonical junctions, STAR can discover non-canonical splices and chimeric (fusion) transcripts, and is also capable of mapping full-length RNA sequences. Using Roche 454 sequencing of reverse transcription polymerase chain reaction amplicons, we experimentally validated 1960 novel intergenic splice junctions with an 80-90% success rate, corroborating the high precision of the STAR mapping strategy. AVAILABILITY AND IMPLEMENTATION STAR is implemented as a standalone C++ code. STAR is free open source software distributed under GPLv3 license and can be downloaded from http://code.google.com/p/rna-star/.


Nature | 2012

Landscape of transcription in human cells

Sarah Djebali; Carrie A. Davis; Angelika Merkel; Alexander Dobin; Timo Lassmann; Ali Mortazavi; Andrea Tanzer; Julien Lagarde; Wei Lin; Felix Schlesinger; Chenghai Xue; Georgi K. Marinov; Jainab Khatun; Brian A. Williams; Chris Zaleski; Joel Rozowsky; Maik Röder; Felix Kokocinski; Rehab F. Abdelhamid; Tyler Alioto; Igor Antoshechkin; Michael T. Baer; Nadav S. Bar; Philippe Batut; Kimberly Bell; Ian Bell; Sudipto Chakrabortty; Xian Chen; Jacqueline Chrast; Joao Curado

Eukaryotic cells make many types of primary and processed RNAs that are found either in specific subcellular compartments or throughout the cells. A complete catalogue of these RNAs is not yet available and their characteristic subcellular localizations are also poorly understood. Because RNA represents the direct output of the genetic information encoded by genomes and a significant proportion of a cell’s regulatory capabilities are focused on its synthesis, processing, transport, modification and translation, the generation of such a catalogue is crucial for understanding genome function. Here we report evidence that three-quarters of the human genome is capable of being transcribed, as well as observations about the range and levels of expression, localization, processing fates, regulatory regions and modifications of almost all currently annotated and thousands of previously unannotated RNAs. These observations, taken together, prompt a redefinition of the concept of a gene.


Nature | 2011

The developmental transcriptome of Drosophila melanogaster

Brenton R. Graveley; Angela N. Brooks; Joseph W. Carlson; Michael O. Duff; Jane M. Landolin; Li Min Yang; Carlo G. Artieri; Marijke J. van Baren; Nathan Boley; Benjamin W. Booth; James B. Brown; Lucy Cherbas; Carrie A. Davis; Alexander Dobin; Renhua Li; Wei Lin; John H. Malone; Nicolas R Mattiuzzo; David S. Miller; David Sturgill; Brian B. Tuch; Chris Zaleski; Dayu Zhang; Marco Blanchette; Sandrine Dudoit; Brian D. Eads; Richard E. Green; Ann S. Hammonds; Lichun Jiang; Phil Kapranov

Drosophila melanogaster is one of the most well studied genetic model organisms, nonetheless its genome still contains unannotated coding and non-coding genes, transcripts, exons, and RNA editing sites. Full discovery and annotation are prerequisites for understanding how the regulation of transcription, splicing, and RNA editing directs development of this complex organism. We used RNA-Seq, tiling microarrays, and cDNA sequencing to explore the transcriptome in 30 distinct developmental stages. We identified 111,195 new elements, including thousands of genes, coding and non-coding transcripts, exons, splicing and editing events and inferred protein isoforms that previously eluded discovery using established experimental, prediction and conservation-based approaches. Together, these data substantially expand the number of known transcribed elements in the Drosophila genome and provide a high-resolution view of transcriptome dynamics throughout development.


Genome Biology | 2012

An encyclopedia of mouse DNA elements (Mouse ENCODE)

John A. Stamatoyannopoulos; Michael Snyder; Ross C. Hardison; Bing Ren; Thomas R. Gingeras; David M. Gilbert; Mark Groudine; M. A. Bender; Rajinder Kaul; Theresa K. Canfield; Erica Giste; Audra K. Johnson; Mia Zhang; Gayathri Balasundaram; Rachel Byron; Vaughan Roach; Peter J. Sabo; Richard Sandstrom; A Sandra Stehling; Robert E. Thurman; Sherman M. Weissman; Philip Cayting; Manoj Hariharan; Jin Lian; Yong Cheng; Stephen G. Landt; Zhihai Ma; Barbara J. Wold; Job Dekker; Gregory E. Crawford

To complement the human Encyclopedia of DNA Elements (ENCODE) project and to enable a broad range of mouse genomics efforts, the Mouse ENCODE Consortium is applying the same experimental pipelines developed for human ENCODE to annotate the mouse genome.


PLOS ONE | 2012

Evidence for Transcript Networks Composed of Chimeric RNAs in Human Cells

Sarah Djebali; Julien Lagarde; Philipp Kapranov; Vincent Lacroix; Christelle Borel; Jonathan M. Mudge; Cédric Howald; Sylvain Foissac; Catherine Ucla; Jacqueline Chrast; Paolo Ribeca; David Martin; Ryan R. Murray; Xinping Yang; Lila Ghamsari; Chenwei Lin; Ian Bell; Erica Dumais; Jorg Drenkow; Michael L. Tress; Josep Lluís Gelpí; Modesto Orozco; Alfonso Valencia; Nynke L. van Berkum; Bryan R. Lajoie; Marc Vidal; John A. Stamatoyannopoulos; Philippe Batut; Alexander Dobin; Jennifer Harrow

The classic organization of a gene structure has followed the Jacob and Monod bacterial gene model proposed more than 50 years ago. Since then, empirical determinations of the complexity of the transcriptomes found in yeast to human has blurred the definition and physical boundaries of genes. Using multiple analysis approaches we have characterized individual gene boundaries mapping on human chromosomes 21 and 22. Analyses of the locations of the 5′ and 3′ transcriptional termini of 492 protein coding genes revealed that for 85% of these genes the boundaries extend beyond the current annotated termini, most often connecting with exons of transcripts from other well annotated genes. The biological and evolutionary importance of these chimeric transcripts is underscored by (1) the non-random interconnections of genes involved, (2) the greater phylogenetic depth of the genes involved in many chimeric interactions, (3) the coordination of the expression of connected genes and (4) the close in vivo and three dimensional proximity of the genomic regions being transcribed and contributing to parts of the chimeric RNAs. The non-random nature of the connection of the genes involved suggest that chimeric transcripts should not be studied in isolation, but together, as an RNA network.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Genome-wide antisense transcription drives mRNA processing in bacteria

Iñigo Lasa; Alejandro Toledo-Arana; Alexander Dobin; Maite Villanueva; I. R. de los Mozos; Marta Vergara-Irigaray; Victor Segura; Delphine Fagegaltier; José R. Penadés; Jaione Valle; Cristina Solano; Thomas R. Gingeras

RNA deep sequencing technologies are revealing unexpected levels of complexity in bacterial transcriptomes with the discovery of abundant noncoding RNAs, antisense RNAs, long 5′ and 3′ untranslated regions, and alternative operon structures. Here, by applying deep RNA sequencing to both the long and short RNA fractions (<50 nucleotides) obtained from the major human pathogen Staphylococcus aureus, we have detected a collection of short RNAs that is generated genome-wide through the digestion of overlapping sense/antisense transcripts by RNase III endoribonuclease. At least 75% of sense RNAs from annotated genes are subject to this mechanism of antisense processing. Removal of RNase III activity reduces the amount of short RNAs and is accompanied by the accumulation of discrete antisense transcripts. These results suggest the production of pervasive but hidden antisense transcription used to process sense transcripts by means of creating double-stranded substrates. This process of RNase III-mediated digestion of overlapping transcripts can be observed in several evolutionarily diverse Gram-positive bacteria and is capable of providing a unique genome-wide posttranscriptional mechanism to adjust mRNA levels.


Nature | 2014

Comparative analysis of the transcriptome across distant species.

Mark Gerstein; Joel Rozowsky; Koon Kiu Yan; Daifeng Wang; Chao Cheng; James B. Brown; Carrie A. Davis; LaDeana W. Hillier; Cristina Sisu; Jingyi Jessica Li; Baikang Pei; Arif Harmanci; Michael O. Duff; Sarah Djebali; Roger P. Alexander; Burak H. Alver; Raymond K. Auerbach; Kimberly Bell; Peter J. Bickel; Max E. Boeck; Nathan Boley; Benjamin W. Booth; Lucy Cherbas; Peter Cherbas; Chao Di; Alexander Dobin; Jorg Drenkow; Brent Ewing; Gang Fang; Megan Fastuca

The transcriptome is the readout of the genome. Identifying common features in it across distant species can reveal fundamental principles. To this end, the ENCODE and modENCODE consortia have generated large amounts of matched RNA-sequencing data for human, worm and fly. Uniform processing and comprehensive annotation of these data allow comparison across metazoan phyla, extending beyond earlier within-phylum transcriptome comparisons and revealing ancient, conserved features. Specifically, we discover co-expression modules shared across animals, many of which are enriched in developmental genes. Moreover, we use expression patterns to align the stages in worm and fly development and find a novel pairing between worm embryo and fly pupae, in addition to the embryo-to-embryo and larvae-to-larvae pairings. Furthermore, we find that the extent of non-canonical, non-coding transcription is similar in each organism, per base pair. Finally, we find in all three organisms that the gene-expression levels, both coding and non-coding, can be quantitatively predicted from chromatin features at the promoter using a ‘universal model’ based on a single set of organism-independent parameters.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Comparison of the transcriptional landscapes between human and mouse tissues

Shin Lin; Yiing Lin; Joseph R. Nery; Mark A. Urich; Alessandra Breschi; Carrie A. Davis; Alexander Dobin; Christopher Zaleski; Michael Beer; William C. Chapman; Thomas R. Gingeras; Joseph R. Ecker; Michael Snyder

Significance To date, various studies have found similarities between humans and mice on a molecular level, and indeed, the murine model serves as an important experimental system for biomedical science. In this study of a broad number of tissues between humans and mice, high-throughput sequencing assays on the transcriptome and epigenome reveal that, in general, differences dominate similarities between the two species. These findings provide the basis for understanding the differences in phenotypes and responses to conditions in humans and mice. Although the similarities between humans and mice are typically highlighted, morphologically and genetically, there are many differences. To better understand these two species on a molecular level, we performed a comparison of the expression profiles of 15 tissues by deep RNA sequencing and examined the similarities and differences in the transcriptome for both protein-coding and -noncoding transcripts. Although commonalities are evident in the expression of tissue-specific genes between the two species, the expression for many sets of genes was found to be more similar in different tissues within the same species than between species. These findings were further corroborated by associated epigenetic histone mark analyses. We also find that many noncoding transcripts are expressed at a low level and are not detectable at appreciable levels across individuals. Moreover, the majority lack obvious sequence homologs between species, even when we restrict our attention to those which are most highly reproducible across biological replicates. Overall, our results indicate that there is considerable RNA expression diversity between humans and mice, well beyond what was described previously, likely reflecting the fundamental physiological differences between these two organisms.


Current protocols in human genetics | 2015

Mapping RNA‐seq Reads with STAR

Alexander Dobin; Thomas R. Gingeras

Mapping of large sets of high‐throughput sequencing reads to a reference genome is one of the foundational steps in RNA‐seq data analysis. The STAR software package performs this task with high levels of accuracy and speed. In addition to detecting annotated and novel splice junctions, STAR is capable of discovering more complex RNA sequence arrangements, such as chimeric and circular RNA. STAR can align spliced sequences of any length with moderate error rates, providing scalability for emerging sequencing technologies. STAR generates output files that can be used for many downstream analyses such as transcript/gene expression quantification, differential gene expression, novel isoform reconstruction, and signal visualization. In this unit, we describe computational protocols that produce various output files, use different RNA‐seq datatypes, and utilize different mapping strategies. STAR is open source software that can be run on Unix, Linux, or Mac OS X systems.


Genome Biology | 2016

A benchmark for RNA-seq quantification pipelines

Mingxiang Teng; Michael I. Love; Carrie A. Davis; Sarah Djebali; Alexander Dobin; Brenton R. Graveley; Sheng Li; Christopher E. Mason; Sara Olson; Dmitri D. Pervouchine; Cricket A. Sloan; Xintao Wei; Lijun Zhan; Rafael A. Irizarry

Obtaining RNA-seq measurements involves a complex data analytical process with a large number of competing algorithms as options. There is much debate about which of these methods provides the best approach. Unfortunately, it is currently difficult to evaluate their performance due in part to a lack of sensitive assessment metrics. We present a series of statistical summaries and plots to evaluate the performance in terms of specificity and sensitivity, available as a R/Bioconductor package (http://bioconductor.org/packages/rnaseqcomp). Using two independent datasets, we assessed seven competing pipelines. Performance was generally poor, with two methods clearly underperforming and RSEM slightly outperforming the rest.

Collaboration


Dive into the Alexander Dobin's collaboration.

Top Co-Authors

Avatar

Thomas R. Gingeras

Cold Spring Harbor Laboratory

View shared research outputs
Top Co-Authors

Avatar

Carrie A. Davis

Cold Spring Harbor Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chris Zaleski

Cold Spring Harbor Laboratory

View shared research outputs
Top Co-Authors

Avatar

Brenton R. Graveley

University of Connecticut Health Center

View shared research outputs
Top Co-Authors

Avatar

Jorg Drenkow

Cold Spring Harbor Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philippe Batut

Cold Spring Harbor Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge