Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexander E. Urban is active.

Publication


Featured researches published by Alexander E. Urban.


Nature | 2011

Mapping copy number variation by population-scale genome sequencing

Ryan E. Mills; Klaudia Walter; Chip Stewart; Robert E. Handsaker; Ken Chen; Can Alkan; Alexej Abyzov; Seungtai Yoon; Kai Ye; R. Keira Cheetham; Asif T. Chinwalla; Donald F. Conrad; Yutao Fu; Fabian Grubert; Iman Hajirasouliha; Fereydoun Hormozdiari; Lilia M. Iakoucheva; Zamin Iqbal; Shuli Kang; Jeffrey M. Kidd; Miriam K. Konkel; Joshua M. Korn; Ekta Khurana; Deniz Kural; Hugo Y. K. Lam; Jing Leng; Ruiqiang Li; Yingrui Li; Chang-Yun Lin; Ruibang Luo

Genomic structural variants (SVs) are abundant in humans, differing from other forms of variation in extent, origin and functional impact. Despite progress in SV characterization, the nucleotide resolution architecture of most SVs remains unknown. We constructed a map of unbalanced SVs (that is, copy number variants) based on whole genome DNA sequencing data from 185 human genomes, integrating evidence from complementary SV discovery approaches with extensive experimental validations. Our map encompassed 22,025 deletions and 6,000 additional SVs, including insertions and tandem duplications. Most SVs (53%) were mapped to nucleotide resolution, which facilitated analysing their origin and functional impact. We examined numerous whole and partial gene deletions with a genotyping approach and observed a depletion of gene disruptions amongst high frequency deletions. Furthermore, we observed differences in the size spectra of SVs originating from distinct formation mechanisms, and constructed a map of SV hotspots formed by common mechanisms. Our analytical framework and SV map serves as a resource for sequencing-based association studies.


Genome Research | 2011

CNVnator: An approach to discover, genotype and characterize typical and atypical CNVs from family and population genome sequencing

Alexej Abyzov; Alexander E. Urban; Michael Snyder; Mark Gerstein

Copy number variation (CNV) in the genome is a complex phenomenon, and not completely understood. We have developed a method, CNVnator, for CNV discovery and genotyping from read-depth (RD) analysis of personal genome sequencing. Our method is based on combining the established mean-shift approach with additional refinements (multiple-bandwidth partitioning and GC correction) to broaden the range of discovered CNVs. We calibrated CNVnator using the extensive validation performed by the 1000 Genomes Project. Because of this, we could use CNVnator for CNV discovery and genotyping in a population and characterization of atypical CNVs, such as de novo and multi-allelic events. Overall, for CNVs accessible by RD, CNVnator has high sensitivity (86%-96%), low false-discovery rate (3%-20%), high genotyping accuracy (93%-95%), and high resolution in breakpoint discovery (<200 bp in 90% of cases with high sequencing coverage). Furthermore, CNVnator is complementary in a straightforward way to split-read and read-pair approaches: It misses CNVs created by retrotransposable elements, but more than half of the validated CNVs that it identifies are not detected by split-read or read-pair. By genotyping CNVs in the CEPH, Yoruba, and Chinese-Japanese populations, we estimated that at least 11% of all CNV loci involve complex, multi-allelic events, a considerably higher estimate than reported earlier. Moreover, among these events, we observed cases with allele distribution strongly deviating from Hardy-Weinberg equilibrium, possibly implying selection on certain complex loci. Finally, by combining discovery and genotyping, we identified six potential de novo CNVs in two family trios.


Science | 2010

Variation in Transcription Factor Binding Among Humans

Maya Kasowski; Fabian Grubert; Christopher Heffelfinger; Manoj Hariharan; Akwasi Asabere; Sebastian M. Waszak; Lukas Habegger; Joel Rozowsky; Minyi Shi; Alexander E. Urban; Miyoung Hong; Konrad J. Karczewski; Wolfgang Huber; Sherman M. Weissman; Mark Gerstein; Jan O. Korbel; Michael Snyder

Like Father, Like Mother, Like Child Transcriptional regulation is mediated by chromatin structure, which may affect the binding of transcription factors, but the extent of how individual-to-individual genetic variation affects such regulation is not well understood. Kasowski et al. (p. 232, published online 18 March) investigated the binding of two transcription factors across the genomes of human individuals and one chimpanzee. Transcription factor binding was associated with genomic features such as nucleotide variation, insertions and deletions, and copy number variation. Thus, genomic sequence variation affects transcription factor binding and may explain expression difference among individuals. McDaniell et al. (p. 235, published online 18 March) provide a genome-wide catalog of variation in chromatin and transcription factor binding in two parent-child trios of European and African ancestry. Up to 10% of active chromatin binding sites were specific to a set of individuals and were often inherited. Furthermore, variation in active chromatin sites showed heritable allele-specific correlation with variation in gene expression. Transcription factor binding sites vary among individuals and are correlated with differences in expression. Differences in gene expression may play a major role in speciation and phenotypic diversity. We examined genome-wide differences in transcription factor (TF) binding in several humans and a single chimpanzee by using chromatin immunoprecipitation followed by sequencing. The binding sites of RNA polymerase II (PolII) and a key regulator of immune responses, nuclear factor κB (p65), were mapped in 10 lymphoblastoid cell lines, and 25 and 7.5% of the respective binding regions were found to differ between individuals. Binding differences were frequently associated with single-nucleotide polymorphisms and genomic structural variants, and these differences were often correlated with differences in gene expression, suggesting functional consequences of binding variation. Furthermore, comparing PolII binding between humans and chimpanzee suggests extensive divergence in TF binding. Our results indicate that many differences in individuals and species occur at the level of TF binding, and they provide insight into the genetic events responsible for these differences.


Nature | 2012

Somatic copy number mosaicism in human skin revealed by induced pluripotent stem cells

Alexej Abyzov; Jessica Mariani; Dean Palejev; Ying Zhang; Michael S. Haney; Livia Tomasini; Anthony F. Ferrandino; Lior A. Rosenberg Belmaker; Anna Szekely; Michael Wilson; Arif Kocabas; Nathaniel E. Calixto; Elena L. Grigorenko; Anita Huttner; Katarzyna Chawarska; Sherman M. Weissman; Alexander E. Urban; Mark Gerstein; Flora M. Vaccarino

Reprogramming somatic cells into induced pluripotent stem cells (iPSCs) has been suspected of causing de novo copy number variation. To explore this issue, here we perform a whole-genome and transcriptome analysis of 20 human iPSC lines derived from the primary skin fibroblasts of seven individuals using next-generation sequencing. We find that, on average, an iPSC line manifests two copy number variants (CNVs) not apparent in the fibroblasts from which the iPSC was derived. Using PCR and digital droplet PCR, we show that at least 50% of those CNVs are present as low-frequency somatic genomic variants in parental fibroblasts (that is, the fibroblasts from which each corresponding human iPSC line is derived), and are manifested in iPSC lines owing to their clonal origin. Hence, reprogramming does not necessarily lead to de novo CNVs in iPSCs, because most of the line-manifested CNVs reflect somatic mosaicism in the human skin. Moreover, our findings demonstrate that clonal expansion, and iPSC lines in particular, can be used as a discovery tool to reliably detect low-frequency CNVs in the tissue of origin. Overall, we estimate that approximately 30% of the fibroblast cells have somatic CNVs in their genomes, suggesting widespread somatic mosaicism in the human body. Our study paves the way to understanding the fundamental question of the extent to which cells of the human body normally acquire structural alterations in their DNA post-zygotically.


Proceedings of the National Academy of Sciences of the United States of America | 2009

The genetic architecture of Down syndrome phenotypes revealed by high-resolution analysis of human segmental trisomies

Jan O. Korbel; Tal Tirosh-Wagner; Alexander E. Urban; Xiao Ning Chen; Maya Kasowski; Li Dai; Fabian Grubert; Chandra Erdman; Michael C. Gao; Ken Lange; Eric M. Sobel; Gillian M. Barlow; Arthur S. Aylsworth; Nancy J. Carpenter; Robin D. Clark; Monika Y. Cohen; Eric Doran; Tzipora C. Falik-Zaccai; Susan O. Lewin; Ira T. Lott; Barbara McGillivray; John B. Moeschler; Mark J. Pettenati; Siegfried M. Pueschel; Kathleen W. Rao; Lisa G. Shaffer; Mordechai Shohat; Alexander J. Van Riper; Dorothy Warburton; Sherman M. Weissman

Down syndrome (DS), or trisomy 21, is a common disorder associated with several complex clinical phenotypes. Although several hypotheses have been put forward, it is unclear as to whether particular gene loci on chromosome 21 (HSA21) are sufficient to cause DS and its associated features. Here we present a high-resolution genetic map of DS phenotypes based on an analysis of 30 subjects carrying rare segmental trisomies of various regions of HSA21. By using state-of-the-art genomics technologies we mapped segmental trisomies at exon-level resolution and identified discrete regions of 1.8–16.3 Mb likely to be involved in the development of 8 DS phenotypes, 4 of which are congenital malformations, including acute megakaryocytic leukemia, transient myeloproliferative disorder, Hirschsprung disease, duodenal stenosis, imperforate anus, severe mental retardation, DS-Alzheimer Disease, and DS-specific congenital heart disease (DSCHD). Our DS-phenotypic maps located DSCHD to a <2-Mb interval. Furthermore, the map enabled us to present evidence against the necessary involvement of other loci as well as specific hypotheses that have been put forward in relation to the etiology of DS—i.e., the presence of a single DS consensus region and the sufficiency of DSCR1 and DYRK1A, or APP, in causing several severe DS phenotypes. Our study demonstrates the value of combining advanced genomics with cohorts of rare patients for studying DS, a prototype for the role of copy-number variation in complex disease.


Genome Research | 2014

Characterizing the genetic basis of transcriptome diversity through RNA-sequencing of 922 individuals

Alexis Battle; Xiaowei Zhu; James B. Potash; Myrna M. Weissman; Courtney McCormick; Christian D. Haudenschild; Kenneth B. Beckman; Jianxin Shi; Rui Mei; Alexander E. Urban; Stephen B. Montgomery; Douglas F. Levinson; Daphne Koller

Understanding the consequences of regulatory variation in the human genome remains a major challenge, with important implications for understanding gene regulation and interpreting the many disease-risk variants that fall outside of protein-coding regions. Here, we provide a direct window into the regulatory consequences of genetic variation by sequencing RNA from 922 genotyped individuals. We present a comprehensive description of the distribution of regulatory variation--by the specific expression phenotypes altered, the properties of affected genes, and the genomic characteristics of regulatory variants. We detect variants influencing expression of over ten thousand genes, and through the enhanced resolution offered by RNA-sequencing, for the first time we identify thousands of variants associated with specific phenotypes including splicing and allelic expression. Evaluating the effects of both long-range intra-chromosomal and trans (cross-chromosomal) regulation, we observe modularity in the regulatory network, with three-dimensional chromosomal configuration playing a particular role in regulatory modules within each chromosome. We also observe a significant depletion of regulatory variants affecting central and critical genes, along with a trend of reduced effect sizes as variant frequency increases, providing evidence that purifying selection and buffering have limited the deleterious impact of regulatory variation on the cell. Further, generalizing beyond observed variants, we have analyzed the genomic properties of variants associated with expression and splicing and developed a Bayesian model to predict regulatory consequences of genetic variants, applicable to the interpretation of individual genomes and disease studies. Together, these results represent a critical step toward characterizing the complete landscape of human regulatory variation.


PLOS Genetics | 2011

A Comprehensive Map of Mobile Element Insertion Polymorphisms in Humans

Chip Stewart; Deniz Kural; Michael Stromberg; Jerilyn A. Walker; Miriam K. Konkel; Adrian M. Stütz; Alexander E. Urban; Fabian Grubert; Hugo Y. K. Lam; Wan Ping Lee; Michele A. Busby; Amit Indap; Erik Garrison; Chad D. Huff; Jinchuan Xing; Michael Snyder; Lynn B. Jorde; Mark A. Batzer; Jan O. Korbel; Gabor T. Marth

As a consequence of the accumulation of insertion events over evolutionary time, mobile elements now comprise nearly half of the human genome. The Alu, L1, and SVA mobile element families are still duplicating, generating variation between individual genomes. Mobile element insertions (MEI) have been identified as causes for genetic diseases, including hemophilia, neurofibromatosis, and various cancers. Here we present a comprehensive map of 7,380 MEI polymorphisms from the 1000 Genomes Project whole-genome sequencing data of 185 samples in three major populations detected with two detection methods. This catalog enables us to systematically study mutation rates, population segregation, genomic distribution, and functional properties of MEI polymorphisms and to compare MEI to SNP variation from the same individuals. Population allele frequencies of MEI and SNPs are described, broadly, by the same neutral ancestral processes despite vastly different mutation mechanisms and rates, except in coding regions where MEI are virtually absent, presumably due to strong negative selection. A direct comparison of MEI and SNP diversity levels suggests a differential mobile element insertion rate among populations.


Human Molecular Genetics | 2012

Mutations in DNMT1 cause autosomal dominant cerebellar ataxia, deafness and narcolepsy

Juliane Winkelmann; Ling Lin; Barbara Schormair; Birgitte Rahbek Kornum; Juliette Faraco; Giuseppe Plazzi; Atle Melberg; Ferdinando Cornelio; Alexander E. Urban; Fabio Pizza; Francesca Poli; Fabian Grubert; Thomas Wieland; Elisabeth Graf; Joachim Hallmayer; Tim M. Strom; Emmanuel Mignot

Autosomal dominant cerebellar ataxia, deafness and narcolepsy (ADCA-DN) is characterized by late onset (30-40 years old) cerebellar ataxia, sensory neuronal deafness, narcolepsy-cataplexy and dementia. We performed exome sequencing in five individuals from three ADCA-DN kindreds and identified DNMT1 as the only gene with mutations found in all five affected individuals. Sanger sequencing confirmed the de novo mutation p.Ala570Val in one family, and showed co-segregation of p.Val606Phe and p.Ala570Val, with the ADCA-DN phenotype, in two other kindreds. An additional ADCA-DN kindred with a p.GLY605Ala mutation was subsequently identified. Narcolepsy and deafness were the first symptoms to appear in all pedigrees, followed by ataxia. DNMT1 is a widely expressed DNA methyltransferase maintaining methylation patterns in development, and mediating transcriptional repression by direct binding to HDAC2. It is also highly expressed in immune cells and required for the differentiation of CD4+ into T regulatory cells. Mutations in exon 20 of this gene were recently reported to cause hereditary sensory neuropathy with dementia and hearing loss (HSAN1). Our mutations are all located in exon 21 and in very close spatial proximity, suggesting distinct phenotypes depending on mutation location within this gene.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Extensive genetic variation in somatic human tissues

Maeve O’Huallachain; Konrad J. Karczewski; Sherman M. Weissman; Alexander E. Urban; Michael Snyder

Genetic variation between individuals has been extensively investigated, but differences between tissues within individuals are far less understood. It is commonly assumed that all healthy cells that arise from the same zygote possess the same genomic content, with a few known exceptions in the immune system and germ line. However, a growing body of evidence shows that genomic variation exists between differentiated tissues. We investigated the scope of somatic genomic variation between tissues within humans. Analysis of copy number variation by high-resolution array-comparative genomic hybridization in diverse tissues from six unrelated subjects reveals a significant number of intraindividual genomic changes between tissues. Many (79%) of these events affect genes. Our results have important consequences for understanding normal genetic and phenotypic variation within individuals, and they have significant implications for both the etiology of genetic diseases such as cancer and for immortalized cell lines that might be used in research and therapeutics.


Proceedings of the National Academy of Sciences of the United States of America | 2008

A procedure for highly specific, sensitive, and unbiased whole-genome amplification

Xinghua Pan; Alexander E. Urban; Dean Palejev; Vincent P. Schulz; Fabian Grubert; Yiping Hu; Michael Snyder; Sherman M. Weissman

Highly specific amplification of complex DNA pools without bias or template-independent products (TIPs) remains a challenge. We have developed a method using phi29 DNA polymerase and trehalose and optimized control of amplification to create micrograms of specific amplicons without TIPs from down to subfemtograms of DNA. With an input of as little as 0.5–2.5 ng of human gDNA or a few cells, the product could be close to native DNA in locus representation. The amplicons from 5 and 0.5 ng of DNA faithfully demonstrated all previously known heterozygous segmental duplications and deletions (3 Mb to 18 kb) located on chromosome 22 and even a homozygous deletion smaller than 1 kb with high-resolution chromosome-wide comparative genomic hybridization. With 550k Infinium BeadChip SNP typing, the >99.7% accuracy was compared favorably with results on unamplified DNA. Importantly, underrepresentation of chromosome termini that occurred with GenomiPhi v2 was greatly rescued with the present procedure, and the call rate and accuracy of SNP typing were also improved for the amplicons with a 0.5-ng, partially degraded DNA input. In addition, the amplification proceeded logarithmically in terms of total yield before saturation; the intact cells was amplified >50 times more efficiently than an equivalent amount of extracted DNA; and the locus imbalance for amplicons with 0.1 ng or lower input of DNA was variable, whereas for higher input it was largely reproducible. This procedure facilitates genomic analysis with single cells or other traces of DNA, and generates products suitable for analysis by massively parallel sequencing as well as microarray hybridization.

Collaboration


Dive into the Alexander E. Urban's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jan O. Korbel

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge