Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexander F. Yakunin is active.

Publication


Featured researches published by Alexander F. Yakunin.


Nature Reviews Microbiology | 2015

An updated evolutionary classification of CRISPR-Cas systems

Kira S. Makarova; Yuri I. Wolf; Omer S. Alkhnbashi; Fabrizio Costa; Shiraz A. Shah; Sita J. Saunders; Rodolphe Barrangou; Stan J. J. Brouns; Emmanuelle Charpentier; Daniel H. Haft; Philippe Horvath; Sylvain Moineau; Francisco J. M. Mojica; Rebecca M. Terns; Michael P. Terns; Malcolm F. White; Alexander F. Yakunin; Roger A. Garrett; John van der Oost; Rolf Backofen; Eugene V. Koonin

The evolution of CRISPR–cas loci, which encode adaptive immune systems in archaea and bacteria, involves rapid changes, in particular numerous rearrangements of the locus architecture and horizontal transfer of complete loci or individual modules. These dynamics complicate straightforward phylogenetic classification, but here we present an approach combining the analysis of signature protein families and features of the architecture of cas loci that unambiguously partitions most CRISPR–cas loci into distinct classes, types and subtypes. The new classification retains the overall structure of the previous version but is expanded to now encompass two classes, five types and 16 subtypes. The relative stability of the classification suggests that the most prevalent variants of CRISPR–Cas systems are already known. However, the existence of rare, currently unclassifiable variants implies that additional types and subtypes remain to be characterized.


Journal of Biological Chemistry | 2006

Genome-wide Analysis of Substrate Specificities of the Escherichia coli Haloacid Dehalogenase-like Phosphatase Family

Ekaterina Kuznetsova; Michael Proudfoot; Claudio F. Gonzalez; Greg Brown; Marina V. Omelchenko; Ivan Borozan; Liran Carmel; Yuri I. Wolf; Hirotada Mori; Alexei Savchenko; C.H. Arrowsmith; Eugene V. Koonin; A. Edwards; Alexander F. Yakunin

Haloacid dehalogenase (HAD)-like hydrolases are a vast superfamily of largely uncharacterized enzymes, with a few members shown to possess phosphatase, β-phosphoglucomutase, phosphonatase, and dehalogenase activities. Using a representative set of 80 phosphorylated substrates, we characterized the substrate specificities of 23 soluble HADs encoded in the Escherichia coli genome. We identified small molecule phosphatase activity in 21 HADs and β-phosphoglucomutase activity in one protein. The E. coli HAD phosphatases show high catalytic efficiency and affinity to a wide range of phosphorylated metabolites that are intermediates of various metabolic reactions. Rather than following the classical “one enzyme-one substrate” model, most of the E. coli HADs show remarkably broad and overlapping substrate spectra. At least 12 reactions catalyzed by HADs currently have no EC numbers assigned in Enzyme Nomenclature. Surprisingly, most HADs hydrolyzed small phosphodonors (acetyl phosphate, carbamoyl phosphate, and phosphoramidate), which also serve as substrates for autophosphorylation of the receiver domains of the two-component signal transduction systems. The physiological relevance of the phosphatase activity with the preferred substrate was validated in vivo for one of the HADs, YniC. Many of the secondary activities of HADs might have no immediate physiological function but could comprise a reservoir for evolution of novel phosphatases.


Nature Methods | 2007

In situ proteolysis for protein crystallization and structure determination

Aiping Dong; Xiaohui Xu; A. Edwards; Changsoo Chang; Maksymilian Chruszcz; Marianne E. Cuff; Marcin Cymborowski; Rosa Di Leo; Olga Egorova; Elena Evdokimova; Ekaterina V. Filippova; Jun Gu; Jennifer Guthrie; Alexandr Ignatchenko; Andrzej Joachimiak; Natalie R. Klostermann; Youngchang Kim; Yuri Korniyenko; Wladek Minor; Qiuni Que; Alexei Savchenko; Tatiana Skarina; Kemin Tan; Alexander F. Yakunin; Adelinda Yee; Veronica Yim; Rongguang Zhang; Hong Zheng; Masato Akutsu; C.H. Arrowsmith

We tested the general applicability of in situ proteolysis to form protein crystals suitable for structure determination by adding a protease (chymotrypsin or trypsin) digestion step to crystallization trials of 55 bacterial and 14 human proteins that had proven recalcitrant to our best efforts at crystallization or structure determination. This is a work in progress; so far we determined structures of 9 bacterial proteins and the human aminoimidazole ribonucleotide synthetase (AIRS) domain.


Molecular Microbiology | 2011

A dual function of the CRISPR–Cas system in bacterial antivirus immunity and DNA repair

Mohan Babu; Natalia Beloglazova; Robert Flick; Chris Graham; Tatiana Skarina; Boguslaw Nocek; Alla Gagarinova; Oxana Pogoutse; Greg Brown; Andrew Binkowski; Sadhna Phanse; Andrzej Joachimiak; Eugene V. Koonin; Alexei Savchenko; Andrew Emili; Jack Greenblatt; A. Edwards; Alexander F. Yakunin

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) and the associated proteins (Cas) comprise a system of adaptive immunity against viruses and plasmids in prokaryotes. Cas1 is a CRISPR‐associated protein that is common to all CRISPR‐containing prokaryotes but its function remains obscure. Here we show that the purified Cas1 protein of Escherichia coli (YgbT) exhibits nuclease activity against single‐stranded and branched DNAs including Holliday junctions, replication forks and 5′‐flaps. The crystal structure of YgbT and site‐directed mutagenesis have revealed the potential active site. Genome‐wide screens show that YgbT physically and genetically interacts with key components of DNA repair systems, including recB, recC and ruvB. Consistent with these findings, the ygbT deletion strain showed increased sensitivity to DNA damage and impaired chromosomal segregation. Similar phenotypes were observed in strains with deletion of CRISPR clusters, suggesting that the function of YgbT in repair involves interaction with the CRISPRs. These results show that YgbT belongs to a novel, structurally distinct family of nucleases acting on branched DNAs and suggest that, in addition to antiviral immunity, at least some components of the CRISPR–Cas system have a function in DNA repair.


Journal of Biological Chemistry | 2013

Nuclease Activity of the Human SAMHD1 Protein Implicated in the Aicardi-Goutières Syndrome and HIV-1 Restriction

Natalia Beloglazova; Robert Flick; Anatoli Tchigvintsev; Greg Brown; Ana Popovic; Boguslaw Nocek; Alexander F. Yakunin

Background: The human SAMHD1 protein has dNTP triphosphatase activity and is involved in HIV-1 restriction and autoimmune syndrome. Results: Purified SAMHD1 exhibits nuclease activity against single-stranded DNA and RNA. Conclusion: The nuclease activity of SAMHD1 is associated with its HD domain. Significance: Identification of nuclease activity in SAMHD1 provides novel insight into the mechanisms of HIV-1 restriction and regulation of autoimmune response. The human HD domain protein SAMHD1 is implicated in the Aicardi-Goutières autoimmune syndrome and in the restriction of HIV-1 replication in myeloid cells. Recently, this protein has been shown to possess dNTP triphosphatase activity, which is proposed to inhibit HIV-1 replication and the autoimmune response by hydrolyzing cellular dNTPs. Here, we show that the purified full-length human SAMHD1 protein also possesses metal-dependent 3′→5′ exonuclease activity against single-stranded DNAs and RNAs in vitro. In double-stranded substrates, this protein preferentially cleaved 3′-overhangs and RNA in blunt-ended DNA/RNA duplexes. Full-length SAMHD1 also exhibited strong DNA and RNA binding to substrates with complex secondary structures. Both nuclease and dNTP triphosphatase activities of SAMHD1 are associated with its HD domain, but the SAM domain is required for maximal activity and nucleic acid binding. The nuclease activity of SAMHD1 could represent an additional mechanism contributing to HIV-1 restriction and suppression of the autoimmune response through direct cleavage of viral and endogenous nucleic acids. In addition, we demonstrated the presence of dGTP triphosphohydrolase and nuclease activities in several microbial HD domain proteins, suggesting that these proteins might contribute to antiviral defense in prokaryotes.


PLOS Biology | 2013

The COMBREX Project: Design, Methodology, and Initial Results

Brian P. Anton; Yi-Chien Chang; Peter Brown; Han-Pil Choi; Lina L. Faller; Jyotsna Guleria; Zhenjun Hu; Niels Klitgord; Ami Levy-Moonshine; Almaz Maksad; Varun Mazumdar; Mark McGettrick; Lais Osmani; Revonda Pokrzywa; John Rachlin; Rajeswari Swaminathan; Benjamin Allen; Genevieve Housman; Caitlin Monahan; Krista Rochussen; Kevin Tao; Ashok S. Bhagwat; Steven E. Brenner; Linda Columbus; Valérie de Crécy-Lagard; Donald J. Ferguson; Alexey Fomenkov; Giovanni Gadda; Richard D. Morgan; Andrei L. Osterman

Experimental data exists for only a vanishingly small fraction of sequenced microbial genes. This community page discusses the progress made by the COMBREX project to address this important issue using both computational and experimental resources.


The EMBO Journal | 2011

Structure and activity of the Cas3 HD nuclease MJ0384, an effector enzyme of the CRISPR interference

Natalia Beloglazova; Pierre Petit; Robert Flick; Greg Brown; Alexei Savchenko; Alexander F. Yakunin

Clustered regularly interspaced short palindromic repeats (CRISPRs) and Cas proteins represent an adaptive microbial immunity system against viruses and plasmids. Cas3 proteins have been proposed to play a key role in the CRISPR mechanism through the direct cleavage of invasive DNA. Here, we show that the Cas3 HD domain protein MJ0384 from Methanocaldococcus jannaschii cleaves endonucleolytically and exonucleolytically (3′–5′) single‐stranded DNAs and RNAs, as well as 3′‐flaps, splayed arms, and R‐loops. The degradation of branched DNA substrates by MJ0384 is stimulated by the Cas3 helicase MJ0383 and ATP. The crystal structure of MJ0384 revealed the active site with two bound metal cations and together with site‐directed mutagenesis suggested a catalytic mechanism. Our studies suggest that the Cas3 HD nucleases working together with the Cas3 helicases can completely degrade invasive DNAs through the combination of endo‐ and exonuclease activities.


Cell | 2011

Riboneogenesis in yeast.

Michelle F. Clasquin; Eugene Melamud; Alexander Singer; Jessica R. Gooding; Xiaohui Xu; Aiping Dong; Hong Cui; Shawn R. Campagna; Alexei Savchenko; Alexander F. Yakunin; Joshua D. Rabinowitz; Amy A. Caudy

Glucose is catabolized in yeast via two fundamental routes, glycolysis and the oxidative pentose phosphate pathway, which produces NADPH and the essential nucleotide component ribose-5-phosphate. Here, we describe riboneogenesis, a thermodynamically driven pathway that converts glycolytic intermediates into ribose-5-phosphate without production of NADPH. Riboneogenesis begins with synthesis, by the combined action of transketolase and aldolase, of the seven-carbon bisphosphorylated sugar sedoheptulose-1,7-bisphosphate. In the pathways committed step, sedoheptulose bisphosphate is hydrolyzed to sedoheptulose-7-phosphate by the enzyme sedoheptulose-1,7-bisphosphatase (SHB17), whose activity we identified based on metabolomic analysis of the corresponding knockout strain. The crystal structure of Shb17 in complex with sedoheptulose-1,7-bisphosphate reveals that the substrate binds in the closed furan form in the active site. Sedoheptulose-7-phosphate is ultimately converted by known enzymes of the nonoxidative pentose phosphate pathway to ribose-5-phosphate. Flux through SHB17 increases when ribose demand is high relative to demand for NADPH, including during ribosome biogenesis in metabolically synchronized yeast cells.


Journal of Biological Chemistry | 2006

Molecular Basis of Formaldehyde Detoxification CHARACTERIZATION OF TWO S-FORMYLGLUTATHIONE HYDROLASES FROM ESCHERICHIA COLI, FrmB AND YeiG

Claudio F. Gonzalez; Michael Proudfoot; Greg Brown; Yurij Korniyenko; Hirotada Mori; Alexei Savchenko; Alexander F. Yakunin

The Escherichia coli genes frmB (yaiM) and yeiG encode two uncharacterized proteins that share 54% sequence identity and contain a serine esterase motif. We demonstrated that purified FrmB and YeiG have high carboxylesterase activity against the model substrates, p-nitrophenyl esters of fatty acids (C2-C6) and α-naphthyl acetate. However, both proteins had the highest hydrolytic activity toward S-formylglutathione, an intermediate of the glutathione-dependent pathway of formaldehyde detoxification. With this substrate, both proteins had similar affinity (Km = 0.41-0.43 mm), but FrmB was almost 5 times more active. Alanine replacement mutagenesis of YeiG demonstrated that Ser145, Asp233, and His256 are absolutely required for activity, indicating that these residues represent a serine hydrolase catalytic triad in this protein and in other S-formylglutathione hydrolases. This was confirmed by inspecting the crystal structure of the Saccharomyces cerevisiae S-formylglutathione hydrolase YJG8 (Protein Data Bank code 1pv1), which has 45% sequence identity to YeiG. The structure revealed a canonical α/β-hydrolase fold and a classical serine hydrolase catalytic triad (Ser161, His276, Asp241). In E. coli cells, the expression of frmB was stimulated 45-75 times by the addition of formaldehyde to the growth medium, whereas YeiG was found to be a constitutive enzyme. The simultaneous deletion of both frmB and yeiG genes was required to increase the sensitivity of the growth of E. coli cells to formaldehyde, suggesting that both FrmB and YeiG contribute to the detoxification of formaldehyde. Thus, FrmB and YeiG are S-formylglutathione hydrolases with a Ser-His-Asp catalytic triad involved in the detoxification of formaldehyde in E. coli.


Biochemistry | 2008

Functional and structural characterization of four glutaminases from Escherichia coli and Bacillus subtilis.

Greg Brown; Alexander Singer; Michael Proudfoot; Tatiana Skarina; Youngchang Kim; Changsoo Chang; Irina Dementieva; Ekaterina Kuznetsova; Claudio F. Gonzalez; Andrzej Joachimiak; Alexei Savchenko; Alexander F. Yakunin

Glutaminases belong to the large superfamily of serine-dependent beta-lactamases and penicillin-binding proteins, and they catalyze the hydrolytic deamidation of L-glutamine to L-glutamate. In this work, we purified and biochemically characterized four predicted glutaminases from Escherichia coli (YbaS and YneH) and Bacillus subtilis (YlaM and YbgJ). The proteins demonstrated strict specificity to L-glutamine and did not hydrolyze D-glutamine or L-asparagine. In each organism, one glutaminase showed higher affinity to glutamine ( E. coli YbaS and B. subtilis YlaM; K m 7.3 and 7.6 mM, respectively) than the second glutaminase ( E. coli YneH and B. subtilis YbgJ; K m 27.6 and 30.6 mM, respectively). The crystal structures of the E. coli YbaS and the B. subtilis YbgJ revealed the presence of a classical beta-lactamase-like fold and conservation of several key catalytic residues of beta-lactamases (Ser74, Lys77, Asn126, Lys268, and Ser269 in YbgJ). Alanine replacement mutagenesis demonstrated that most of the conserved residues located in the putative glutaminase catalytic site are essential for activity. The crystal structure of the YbgJ complex with the glutaminase inhibitor 6-diazo-5-oxo- l-norleucine revealed the presence of a covalent bond between the inhibitor and the hydroxyl oxygen of Ser74, providing evidence that Ser74 is the primary catalytic nucleophile and that the glutaminase reaction proceeds through formation of an enzyme-glutamyl intermediate. Growth experiments with the E. coli glutaminase deletion strains revealed that YneH is involved in the assimilation of l-glutamine as a sole source of carbon and nitrogen and suggested that both glutaminases (YbaS and YneH) also contribute to acid resistance in E. coli.

Collaboration


Dive into the Alexander F. Yakunin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Greg Brown

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrzej Joachimiak

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Boguslaw Nocek

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge