Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert Flick is active.

Publication


Featured researches published by Robert Flick.


Molecular Microbiology | 2011

A dual function of the CRISPR–Cas system in bacterial antivirus immunity and DNA repair

Mohan Babu; Natalia Beloglazova; Robert Flick; Chris Graham; Tatiana Skarina; Boguslaw Nocek; Alla Gagarinova; Oxana Pogoutse; Greg Brown; Andrew Binkowski; Sadhna Phanse; Andrzej Joachimiak; Eugene V. Koonin; Alexei Savchenko; Andrew Emili; Jack Greenblatt; A. Edwards; Alexander F. Yakunin

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) and the associated proteins (Cas) comprise a system of adaptive immunity against viruses and plasmids in prokaryotes. Cas1 is a CRISPR‐associated protein that is common to all CRISPR‐containing prokaryotes but its function remains obscure. Here we show that the purified Cas1 protein of Escherichia coli (YgbT) exhibits nuclease activity against single‐stranded and branched DNAs including Holliday junctions, replication forks and 5′‐flaps. The crystal structure of YgbT and site‐directed mutagenesis have revealed the potential active site. Genome‐wide screens show that YgbT physically and genetically interacts with key components of DNA repair systems, including recB, recC and ruvB. Consistent with these findings, the ygbT deletion strain showed increased sensitivity to DNA damage and impaired chromosomal segregation. Similar phenotypes were observed in strains with deletion of CRISPR clusters, suggesting that the function of YgbT in repair involves interaction with the CRISPRs. These results show that YgbT belongs to a novel, structurally distinct family of nucleases acting on branched DNAs and suggest that, in addition to antiviral immunity, at least some components of the CRISPR–Cas system have a function in DNA repair.


Journal of Biological Chemistry | 2013

Nuclease Activity of the Human SAMHD1 Protein Implicated in the Aicardi-Goutières Syndrome and HIV-1 Restriction

Natalia Beloglazova; Robert Flick; Anatoli Tchigvintsev; Greg Brown; Ana Popovic; Boguslaw Nocek; Alexander F. Yakunin

Background: The human SAMHD1 protein has dNTP triphosphatase activity and is involved in HIV-1 restriction and autoimmune syndrome. Results: Purified SAMHD1 exhibits nuclease activity against single-stranded DNA and RNA. Conclusion: The nuclease activity of SAMHD1 is associated with its HD domain. Significance: Identification of nuclease activity in SAMHD1 provides novel insight into the mechanisms of HIV-1 restriction and regulation of autoimmune response. The human HD domain protein SAMHD1 is implicated in the Aicardi-Goutières autoimmune syndrome and in the restriction of HIV-1 replication in myeloid cells. Recently, this protein has been shown to possess dNTP triphosphatase activity, which is proposed to inhibit HIV-1 replication and the autoimmune response by hydrolyzing cellular dNTPs. Here, we show that the purified full-length human SAMHD1 protein also possesses metal-dependent 3′→5′ exonuclease activity against single-stranded DNAs and RNAs in vitro. In double-stranded substrates, this protein preferentially cleaved 3′-overhangs and RNA in blunt-ended DNA/RNA duplexes. Full-length SAMHD1 also exhibited strong DNA and RNA binding to substrates with complex secondary structures. Both nuclease and dNTP triphosphatase activities of SAMHD1 are associated with its HD domain, but the SAM domain is required for maximal activity and nucleic acid binding. The nuclease activity of SAMHD1 could represent an additional mechanism contributing to HIV-1 restriction and suppression of the autoimmune response through direct cleavage of viral and endogenous nucleic acids. In addition, we demonstrated the presence of dGTP triphosphohydrolase and nuclease activities in several microbial HD domain proteins, suggesting that these proteins might contribute to antiviral defense in prokaryotes.


The EMBO Journal | 2011

Structure and activity of the Cas3 HD nuclease MJ0384, an effector enzyme of the CRISPR interference

Natalia Beloglazova; Pierre Petit; Robert Flick; Greg Brown; Alexei Savchenko; Alexander F. Yakunin

Clustered regularly interspaced short palindromic repeats (CRISPRs) and Cas proteins represent an adaptive microbial immunity system against viruses and plasmids. Cas3 proteins have been proposed to play a key role in the CRISPR mechanism through the direct cleavage of invasive DNA. Here, we show that the Cas3 HD domain protein MJ0384 from Methanocaldococcus jannaschii cleaves endonucleolytically and exonucleolytically (3′–5′) single‐stranded DNAs and RNAs, as well as 3′‐flaps, splayed arms, and R‐loops. The degradation of branched DNA substrates by MJ0384 is stimulated by the Cas3 helicase MJ0383 and ATP. The crystal structure of MJ0384 revealed the active site with two bound metal cations and together with site‐directed mutagenesis suggested a catalytic mechanism. Our studies suggest that the Cas3 HD nucleases working together with the Cas3 helicases can completely degrade invasive DNAs through the combination of endo‐ and exonuclease activities.


Nature Communications | 2013

Genome sequence and functional genomic analysis of the oil-degrading bacterium Oleispira antarctica.

Michael Kube; Tatyana N. Chernikova; Yamal Al-Ramahi; Ana Beloqui; Nieves López-Cortéz; Marı´a-Eugenia Guazzaroni; Hermann J. Heipieper; Sven Klages; Oleg R. Kotsyurbenko; Ines Langer; Taras Y. Nechitaylo; Heinrich Lünsdorf; Marisol Fernández; Silvia Juárez; Sergio Ciordia; Alexander Singer; Olga Kagan; Olga Egorova; Pierre Petit; Peter J. Stogios; Youngchang Kim; Anatoli Tchigvintsev; Robert Flick; Renata Denaro; Maria Genovese; Juan Pablo Albar; Oleg N. Reva; Montserrat Martínez-Gomariz; Hai Tran; Manuel Ferrer

Ubiquitous bacteria from the genus Oleispira drive oil degradation in the largest environment on Earth, the cold and deep sea. Here we report the genome sequence of Oleispira antarctica and show that compared with Alcanivorax borkumensis—the paradigm of mesophilic hydrocarbonoclastic bacteria—O. antarctica has a larger genome that has witnessed massive gene-transfer events. We identify an array of alkane monooxygenases, osmoprotectants, siderophores and micronutrient-scavenging pathways. We also show that at low temperatures, the main protein-folding machine Cpn60 functions as a single heptameric barrel that uses larger proteins as substrates compared with the classical double-barrel structure observed at higher temperatures. With 11 protein crystal structures, we further report the largest set of structures from one psychrotolerant organism. The most common structural feature is an increased content of surface-exposed negatively charged residues compared to their mesophilic counterparts. Our findings are relevant in the context of microbial cold-adaptation mechanisms and the development of strategies for oil-spill mitigation in cold environments.


Journal of Biological Chemistry | 2009

Structural and Biochemical Characterization of the Type II Fructose-1,6-bisphosphatase GlpX from Escherichia coli

Greg Brown; Alexander Singer; Vladimir V. Lunin; Michael Proudfoot; Tatiana Skarina; Robert Flick; Samvel Kochinyan; Ruslan Sanishvili; Andrzej Joachimiak; A. Edwards; Alexei Savchenko; Alexander F. Yakunin

Gluconeogenesis is an important metabolic pathway, which produces glucose from noncarbohydrate precursors such as organic acids, fatty acids, amino acids, or glycerol. Fructose-1,6-bisphosphatase, a key enzyme of gluconeogenesis, is found in all organisms, and five different classes of these enzymes have been identified. Here we demonstrate that Escherichia coli has two class II fructose-1,6-bisphosphatases, GlpX and YggF, which show different catalytic properties. We present the first crystal structure of a class II fructose-1,6-bisphosphatase (GlpX) determined in a free state and in the complex with a substrate (fructose 1,6-bisphosphate) or inhibitor (phosphate). The crystal structure of the ligand-free GlpX revealed a compact, globular shape with two α/β-sandwich domains. The core fold of GlpX is structurally similar to that of Li+-sensitive phosphatases implying that they have a common evolutionary origin and catalytic mechanism. The structure of the GlpX complex with fructose 1,6-bisphosphate revealed that the active site is located between two domains and accommodates several conserved residues coordinating two metal ions and the substrate. The third metal ion is bound to phosphate 6 of the substrate. Inorganic phosphate strongly inhibited activity of both GlpX and YggF, and the crystal structure of the GlpX complex with phosphate demonstrated that the inhibitor molecule binds to the active site. Alanine replacement mutagenesis of GlpX identified 12 conserved residues important for activity and suggested that Thr90 is the primary catalytic residue. Our data provide insight into the molecular mechanisms of the substrate specificity and catalysis of GlpX and other class II fructose-1,6-bisphosphatases.


Nature Medicine | 2017

SAMHD1 is a biomarker for cytarabine response and a therapeutic target in acute myeloid leukemia

Constanze Schneider; Thomas Oellerich; Hanna-Mari Baldauf; Sarah-Marie Schwarz; Dominique Thomas; Robert Flick; Hanibal Bohnenberger; Lars Kaderali; Lena Stegmann; Anjali Cremer; Margarethe Martin; Julian Lohmeyer; Martin Michaelis; Veit Hornung; Christoph Schliemann; Wolfgang E. Berdel; Wolfgang Hartmann; Eva Wardelmann; Federico Comoglio; Martin-Leo Hansmann; Alexander F. Yakunin; Gerd Geisslinger; Philipp Ströbel; Nerea Ferreirós; Hubert Serve; Oliver T. Keppler; Jindrich Cinatl

The nucleoside analog cytarabine (Ara-C) is an essential component of primary and salvage chemotherapy regimens for acute myeloid leukemia (AML). After cellular uptake, Ara-C is converted into its therapeutically active triphosphate metabolite, Ara-CTP, which exerts antileukemic effects, primarily by inhibiting DNA synthesis in proliferating cells. Currently, a substantial fraction of patients with AML fail to respond effectively to Ara-C therapy, and reliable biomarkers for predicting the therapeutic response to Ara-C are lacking. SAMHD1 is a deoxynucleoside triphosphate (dNTP) triphosphohydrolase that cleaves physiological dNTPs into deoxyribonucleosides and inorganic triphosphate. Although it has been postulated that SAMHD1 sensitizes cancer cells to nucleoside-analog derivatives through the depletion of competing dNTPs, we show here that SAMHD1 reduces Ara-C cytotoxicity in AML cells. Mechanistically, dGTP-activated SAMHD1 hydrolyzes Ara-CTP, which results in a drastic reduction of Ara-CTP in leukemic cells. Loss of SAMHD1 activity—through genetic depletion, mutational inactivation of its triphosphohydrolase activity or proteasomal degradation using specialized, virus-like particles—potentiates the cytotoxicity of Ara-C in AML cells. In mouse models of retroviral AML transplantation, as well as in retrospective analyses of adult patients with AML, the response to Ara-C-containing therapy was inversely correlated with SAMHD1 expression. These results identify SAMHD1 as a potential biomarker for the stratification of patients with AML who might best respond to Ara-C-based therapy and as a target for treating Ara-C-refractory AML.


Journal of Biological Chemistry | 2015

Functional Diversity of Haloacid Dehalogenase Superfamily Phosphatases from Saccharomyces cerevisiae BIOCHEMICAL, STRUCTURAL, AND EVOLUTIONARY INSIGHTS

Ekaterina Kuznetsova; Boguslaw Nocek; Greg Brown; Kira S. Makarova; Robert Flick; Yuri I. Wolf; Anna N. Khusnutdinova; Elena Evdokimova; Ke Jin; Kemin Tan; Andrew D. Hanson; Ghulam Hasnain; Rémi Zallot; Valérie de Crécy-Lagard; Mohan Babu; Alexei Savchenko; Andrzej Joachimiak; A. Edwards; Eugene V. Koonin; Alexander F. Yakunin

Background: Haloacid dehalogenase (HAD)-like hydrolases represent the largest superfamily of phosphatases. Results: Biochemical, structural, and evolutionary studies of the 10 uncharacterized soluble HADs from Saccharomyces cerevisiae provided insight into their substrates, active sites, and evolution. Conclusion: Evolution of novel substrate specificities of HAD phosphatases shows no strict correlation with sequence divergence. Significance: Our work contributes to a better understanding of an important model organism. The haloacid dehalogenase (HAD)-like enzymes comprise a large superfamily of phosphohydrolases present in all organisms. The Saccharomyces cerevisiae genome encodes at least 19 soluble HADs, including 10 uncharacterized proteins. Here, we biochemically characterized 13 yeast phosphatases from the HAD superfamily, which includes both specific and promiscuous enzymes active against various phosphorylated metabolites and peptides with several HADs implicated in detoxification of phosphorylated compounds and pseudouridine. The crystal structures of four yeast HADs provided insight into their active sites, whereas the structure of the YKR070W dimer in complex with substrate revealed a composite substrate-binding site. Although the S. cerevisiae and Escherichia coli HADs share low sequence similarities, the comparison of their substrate profiles revealed seven phosphatases with common preferred substrates. The cluster of secondary substrates supporting significant activity of both S. cerevisiae and E. coli HADs includes 28 common metabolites that appear to represent the pool of potential activities for the evolution of novel HAD phosphatases. Evolution of novel substrate specificities of HAD phosphatases shows no strict correlation with sequence divergence. Thus, evolution of the HAD superfamily combines the conservation of the overall substrate pool and the substrate profiles of some enzymes with remarkable biochemical and structural flexibility of other superfamily members.


Microbial Biotechnology | 2013

Biochemical studies of the multicopper oxidase (small laccase) from Streptomyces coelicolor using bioactive phytochemicals and site-directed mutagenesis

Mohammed Sherif; Debbie Waung; Valentina Mavisakalyan; Robert Flick; Greg Brown; Mamdouh Abou-Zaid; Alexander F. Yakunin; Emma R. Master

Multicopper oxidases can act on a broad spectrum of phenolic and non‐phenolic compounds. These enzymes include laccases, which are widely distributed in plants and fungi, and were more recently identified in bacteria. Here, we present the results of biochemical and mutational studies of small laccase (SLAC), a multicopper oxidase from Streptomyces coelicolor (SCO6712). In addition to typical laccase substrates, SLAC was tested using phenolic compounds that exhibit antioxidant activity. SLAC showed oxidase activity against 12 of 23 substrates tested, including caffeic acid, ferulic acid, resveratrol, quercetin, morin, kaempferol and myricetin. The kinetic parameters of SLAC were determined for 2,2′‐azino‐bis(3‐ethylbenzthiazoline‐6‐sulphonic acid), 2,6‐dimethoxyphenol, quercetin, morin and myricetin, and maximum reaction rates were observed with myricetin, where kcat and Km values at 60°C were 8.1 (± 0.8) s−1 and 0.9 (± 0.3) mM respectively. SLAC had a broad pH optimum for activity (between pH 4 and 8) and temperature optimum at 60–70°C. It demonstrated remarkable thermostability with a half‐life of over 10 h at 80°C and over 7 h at 90°C. Site‐directed mutagenesis revealed 17 amino acid residues important for SLAC activity including the 10 His residues involved in copper coordination. Most notably, the Y229A and Y230A mutant proteins showed over 10‐fold increase in activity compared with the wild‐type SLAC, which was correlated to higher copper incorporation, while kinetic analyses with S929A predicts localization of this residue near the meta‐position of aromatic substrates.


Journal of Biological Chemistry | 2012

Biochemical and Structural Studies of Uncharacterized Protein PA0743 from Pseudomonas aeruginosa Revealed NAD+-dependent l-Serine Dehydrogenase

Anatoli Tchigvintsev; Alexander Singer; Greg Brown; Robert Flick; Elena Evdokimova; Kemin Tan; Claudio F. Gonzalez; Alexei Savchenko; Alexander F. Yakunin

Background: β-Hydroxyacid dehydrogenases are ubiquitous enzymes, most of which remain uncharacterized. Results: Biochemical, crystallographic, and mutational analyses identified uncharacterized Pseudomonas aeruginosa protein PA0743 as a l-serine dehydrogenase and characterized the molecular details of its active site. Conclusion: PA0743 is the first NAD+-dependent l-serine dehydrogenase potentially involved in serine catabolism. Significance: Our study provides molecular insights into the mechanism of β-hydroxyacid dehydrogenases. The β-hydroxyacid dehydrogenases form a large family of ubiquitous enzymes that catalyze oxidation of various β-hydroxy acid substrates to corresponding semialdehydes. Several known enzymes include β-hydroxyisobutyrate dehydrogenase, 6-phosphogluconate dehydrogenase, 2-(hydroxymethyl)glutarate dehydrogenase, and phenylserine dehydrogenase, but the vast majority of β-hydroxyacid dehydrogenases remain uncharacterized. Here, we demonstrate that the predicted β-hydroxyisobutyrate dehydrogenase PA0743 from Pseudomonas aeruginosa catalyzes an NAD+-dependent oxidation of l-serine and methyl-l-serine but exhibits low activity against β-hydroxyisobutyrate. Two crystal structures of PA0743 were solved at 2.2–2.3-Å resolution and revealed an N-terminal Rossmann fold domain connected by a long α-helix to the C-terminal all-α domain. The PA0743 apostructure showed the presence of additional density modeled as HEPES bound in the interdomain cleft close to the predicted catalytic Lys-171, revealing the molecular details of the PA0743 substrate-binding site. The structure of the PA0743-NAD+ complex demonstrated that the opposite side of the enzyme active site accommodates the cofactor, which is also bound near Lys-171. Site-directed mutagenesis of PA0743 emphasized the critical role of four amino acid residues in catalysis including the primary catalytic residue Lys-171. Our results provide further insight into the molecular mechanisms of substrate selectivity and activity of β-hydroxyacid dehydrogenases.


Nucleic Acids Research | 2014

The CRISPR-associated Cas4 protein Pcal_0546 from Pyrobaculum calidifontis contains a [2Fe-2S] cluster: crystal structure and nuclease activity

Sofia Lemak; Boguslaw Nocek; Natalia Beloglazova; Tatiana Skarina; Robert Flick; Greg Brown; Andrzej Joachimiak; Alexei Savchenko; Alexander F. Yakunin

Cas4 nucleases constitute a core family of CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) associated proteins, but little is known about their structure and activity. Here we report the crystal structure of the Cas4 protein Pcal_0546 from Pyrobaculum calidifontis, which revealed a monomeric protein with a RecB-like fold and one [2Fe-2S] cluster coordinated by four conserved Cys residues. Pcal_0546 exhibits metal-dependent 5′ to 3′ exonuclease activity against ssDNA substrates, whereas the Cas4 protein SSO1391 from Sulfolobus solfataricus can cleave ssDNA in both the 5′ to 3′ and 3′ to 5′ directions. The active site of Pcal_0546 contains a bound metal ion coordinated by the side chains of Asp123, Glu136, His146, and the main chain carbonyl of Ile137. Site-directed mutagenesis of Pcal_0546 and SSO1391 revealed that the residues of RecB motifs II, III and QhXXY are critical for nuclease activity, whereas mutations of the conserved Cys residues resulted in a loss of the iron-sulfur cluster, but had no effect on DNA cleavage. Our results revealed the biochemical diversity of Cas4 nucleases, which can have different oligomeric states, contain [4Fe-4S] or [2Fe-2S] clusters, and cleave single stranded DNA in different directions producing single-stranded DNA overhangs, which are potential intermediates for the synthesis of new CRISPR spacers.

Collaboration


Dive into the Robert Flick's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Greg Brown

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrzej Joachimiak

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Boguslaw Nocek

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge