Alexander Farutin
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alexander Farutin.
Physical Review Letters | 2012
Gwennou Coupier; Alexander Farutin; Christophe Minetti; Thomas Podgorski; Chaouqi Misbah
Soft bodies flowing in a channel often exhibit parachutelike shapes usually attributed to an increase of hydrodynamic constraint (viscous stress and/or confinement). We show that the presence of a fluid membrane leads to the reverse phenomenon and build a phase diagram of shapes-which are classified as bullet, croissant, and parachute-in channels of varying aspect ratio. Unexpectedly, shapes are relatively wider in the narrowest direction of the channel. We highlight the role of flow patterns on the membrane in this response to the asymmetry of stress distribution.
Journal of Computational Physics | 2014
Alexander Farutin; Thierry Biben; Chaouqi Misbah
Vesicles are locally-inextensible fluid membranes, capsules are endowed with in-plane shear elasticity mimicking the cytoskeleton of red blood cells (RBCs), but are extensible, while RBCs are inextensible. We use boundary integral (BI) methods based on the Green function techniques to model and solve numerically their dynamics. We regularize the single layer integral by subtraction of exact identities for the terms involving the normal and the tangential components of the force. The stability and precision of BI calculation is enhanced by taking advantage of additional quadrature nodes located in vertices of an auxiliary mesh, constructed by a standard refinement procedure from the main mesh. We extend the partition of unity technique to boundary integral calculation on triangular meshes. The proposed algorithm offers the same treatment of near-singular integration regardless whether the source and the target points belong to the same surface or not. Bending forces are calculated by using expressions derived from differential geometry. Membrane incompressibility is handled by using two penalization parameters per suspended entity: one for deviation of the global area from prescribed value and another for the sum of squares of local strains defined on each vertex. Extensible or inextensible capsules, a model of RBC, are studied by storing the position in the reference configuration for each vertex. The elastic force is then calculated by direct variation of the elastic energy. Various nonequilibrium physical examples on vesicles and capsules will be presented and the convergence and precision tests highlighted. Overall, a good convergence is observed with numerical error inversely proportional to the number of vertices used for surface discretization, the highest order of convergence allowed by piece-wise linear interpolation of the surface.
Physical Review E | 2015
Hao Wu; Marine Thiébaud; Wei-Fan Hu; Alexander Farutin; Salima Rafaï; Ming-Chih Lai; Philippe Peyla; Chaouqi Misbah
Many eukaryotic cells undergo frequent shape changes (described as amoeboid motion) that enable them to move forward. We investigate the effect of confinement on a minimal model of amoeboid swimmer. A complex picture emerges: (i) The swimmers nature (i.e., either pusher or puller) can be modified by confinement, thus suggesting that this is not an intrinsic property of the swimmer. This swimming nature transition stems from intricate internal degrees of freedom of membrane deformation. (ii) The swimming speed might increase with increasing confinement before decreasing again for stronger confinements. (iii) A straight amoeoboid swimmers trajectory in the channel can become unstable, and ample lateral excursions of the swimmer prevail. This happens for both pusher- and puller-type swimmers. For weak confinement, these excursions are symmetric, while they become asymmetric at stronger confinement, whereby the swimmer is located closer to one of the two walls. In this study, we combine numerical and theoretical analyses.
Soft Matter | 2016
Hao Wu; Alexander Farutin; Wei-Fan Hu; Marine Thiébaud; Salima Rafaï; Philippe Peyla; Ming-Chih Lai; Chaouqi Misbah
Several micro-organisms, such as bacteria, algae, or spermatozoa, use flagellar or ciliary activity to swim in a fluid, while many other micro-organisms instead use ample shape deformation, described as amoeboid, to propel themselves either by crawling on a substrate or swimming. Many eukaryotic cells were believed to require an underlying substratum to migrate (crawl) by using membrane deformation (like blebbing or generation of lamellipodia) but there is now increasing evidence that a large variety of cells (including those of the immune system) can migrate without the assistance of focal adhesion, allowing them to swim as efficiently as they can crawl. This paper details the analysis of amoeboid swimming in a confined fluid by modeling the swimmer as an inextensible membrane deploying local active forces (with zero total force and torque). The swimmer displays a rich behavior: it may settle into a straight trajectory in the channel or navigate from one wall to the other depending on its confinement. The nature of the swimmer is also found to be affected by confinement: the swimmer can behave, on average over one swimming cycle, as a pusher at low confinement, and becomes a puller at higher confinement, or vice versa. The swimmers nature is thus not an intrinsic property. The scaling of the swimmer velocity V with the force amplitude A is analyzed in detail showing that at small enough A, V∼A(2)/η(2) (where η is the viscosity of the ambient fluid), whereas at large enough A, V is independent of the force and is determined solely by the stroke cycle frequency and the swimmer size. This finding starkly contrasts with models where motion is based on ciliary and flagellar activity, where V∼A/η. To conclude, two definitions of efficiency as put forward in the literature are analyzed with distinct outcomes. We find that one type of efficiency has an optimum as a function of confinement while the other does not. Future perspectives are outlined.
Physical Review Fluids | 2017
Othmane Aouane; Alexander Farutin; Marine Thiébaud; Abdelillah Benyoussef; Christian Wagner; Chaouqi Misbah
The mechanism of hydrodynamics-induced pairing of soft particles, namely closed bilayer membranes (vesicles, a model system for red blood cells) and drops, is studied numerically with a special attention paid to the role of the confinement (the particles are within two rigid walls). This study unveils the complexity of the pairing mechanism due to hydrodynamic interactions. We find both for vesicles and for drops that two particles attract each other and form a stable pair at weak confinement if their initial separation is below a certain value. If the initial separation is beyond that distance, the particles repel each other and adopt a longer stable interdistance. This means that for the same confinement we have (at least) two stable branches. To which branch a pair of particles relaxes with time depends only on the initial configuration. An unstable branch is found between these two stable branches. At a critical confinement the stable branch corresponding to the shortest interdistance merges with the unstable branch in the form of a saddle-node bifurcation. At this critical confinement we have a finite jump from a solution corresponding to the continuation of the unbounded case to a solution which is induced by the presence of walls. The results are summarized in a phase diagram, which proves to be of a complex nature. The fact that both vesicles and drops have the same qualitative phase diagram points to the existence of a universal behavior, highlighting the fact that with regard to pairing the details of mechanical properties of the deformable particles are unimportant. This offers an interesting perspective for simple analytical modeling. PACS numbers: 47.11.Hj, 47.15.G-, 83.50.Ha, 83.80.Lz, 87.16.D∗ Current address: Forschungszentrum Jülich GmbH, Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Dynamics of Complex Fluids and Interfaces, Fürther Straße 248, 90429 Nürnberg, Germany
Biophysical Journal | 2018
Madhav Ranganathan; Alexander Farutin; Chaouqi Misbah
Recently, it has been reported that the cells of the immune system, as well as Dictyostelium amoebae, can swim in a bulk fluid by changing their shape repeatedly. We refer to this motion as amoeboid swimming. Here, we explore how the propulsion and the deformation of the cell emerge as an interplay between the active forces that the cell employs to activate the shape changes and the passive, viscoelastic response of the cell membrane, the cytoskeleton, and the surrounding environment. We introduce a model in which the cell is represented by an elastic capsule enclosing a viscous liquid. The motion of the cell is activated by time-dependent forces distributed along its surface. The model is solved numerically using the boundary integral formulation. The cell can swim in a fluid medium using cyclic deformations or strokes. We measure the swimming velocity of the cell as a function of the force amplitude, the stroke frequency, and the viscoelastic properties of the cell and the medium. We show that an increase in the shear modulus leads both to a regular slowdown of the swimming, which is more pronounced for more deflated swimmers, and to a tendency toward cell buckling. For a given stroke frequency, the swimming velocity shows a quadratic dependence on force amplitude for small forces, as expected, but saturates for large forces. We propose a scaling relationship for the dependence of swimming velocity on the relevant parameters that qualitatively reproduces the numerical results and allows us to define regimes in which the cell motility is dominated by elastic response or by the effective cortex viscosity. This leads to an estimate of the effective cortex viscosity of 103 Pa ⋅ s for which the two effects are comparable, which is close to that provided by several experiments.
Physical Review E | 2011
Thierry Biben; Alexander Farutin; Chaouqi Misbah
Physical Review Letters | 2013
Alexander Farutin; Chaouqi Misbah
Physical Review Letters | 2013
Alexander Farutin; Salima Rafaï; Dag Kristian Dysthe; Alain Duperray; Philippe Peyla; Chaouqi Misbah
Physical Review Letters | 2012
Alexander Farutin; Chaouqi Misbah