Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexander G. Fletcher is active.

Publication


Featured researches published by Alexander G. Fletcher.


PLOS Computational Biology | 2013

Chaste: An Open Source C++ Library for Computational Physiology and Biology

Gary R. Mirams; Christopher J. Arthurs; Miguel O. Bernabeu; Rafel Bordas; Jonathan Cooper; Alberto Corrias; Yohan Davit; Sara-Jane Dunn; Alexander G. Fletcher; Daniel G. Harvey; Megan E. Marsh; James M. Osborne; Pras Pathmanathan; Joe Pitt-Francis; James Southern; Nejib Zemzemi; David J. Gavaghan

Chaste — Cancer, Heart And Soft Tissue Environment — is an open source C++ library for the computational simulation of mathematical models developed for physiology and biology. Code development has been driven by two initial applications: cardiac electrophysiology and cancer development. A large number of cardiac electrophysiology studies have been enabled and performed, including high-performance computational investigations of defibrillation on realistic human cardiac geometries. New models for the initiation and growth of tumours have been developed. In particular, cell-based simulations have provided novel insight into the role of stem cells in the colorectal crypt. Chaste is constantly evolving and is now being applied to a far wider range of problems. The code provides modules for handling common scientific computing components, such as meshes and solvers for ordinary and partial differential equations (ODEs/PDEs). Re-use of these components avoids the need for researchers to ‘re-invent the wheel’ with each new project, accelerating the rate of progress in new applications. Chaste is developed using industrially-derived techniques, in particular test-driven development, to ensure code quality, re-use and reliability. In this article we provide examples that illustrate the types of problems Chaste can be used to solve, which can be run on a desktop computer. We highlight some scientific studies that have used or are using Chaste, and the insights they have provided. The source code, both for specific releases and the development version, is available to download under an open source Berkeley Software Distribution (BSD) licence at http://www.cs.ox.ac.uk/chaste, together with details of a mailing list and links to documentation and tutorials.


Biophysical Journal | 2014

Vertex Models of Epithelial Morphogenesis

Alexander G. Fletcher; Miriam Osterfield; Ruth E. Baker; Stanislav Y. Shvartsman

The dynamic behavior of epithelial cell sheets plays a central role during numerous developmental processes. Genetic and imaging studies of epithelial morphogenesis in a wide range of organisms have led to increasingly detailed mechanisms of cell sheet dynamics. Computational models offer a useful means by which to investigate and test these mechanisms, and have played a key role in the study of cell-cell interactions. A variety of modeling approaches can be used to simulate the balance of forces within an epithelial sheet. Vertex models are a class of such models that consider cells as individual objects, approximated by two-dimensional polygons representing cellular interfaces, in which each vertex moves in response to forces due to growth, interfacial tension, and pressure within each cell. Vertex models are used to study cellular processes within epithelia, including cell motility, adhesion, mitosis, and delamination. This review summarizes how vertex models have been used to provide insight into developmental processes and highlights current challenges in this area, including progressing these models from two to three dimensions and developing new tools for model validation.


Cell Proliferation | 2009

An integrative computational model for intestinal tissue renewal.

I.M.M. van Leeuwen; Gary R. Mirams; Alex Walter; Alexander G. Fletcher; Philip J. Murray; James M. Osborne; S. Varma; S. J. Young; Jonathan Cooper; B. Doyle; Joe Pitt-Francis; Lee Momtahan; Pras Pathmanathan; Jonathan P. Whiteley; S. J. Chapman; David J. Gavaghan; Oliver E. Jensen; John R. King; Philip K. Maini; Sarah L. Waters; Helen M. Byrne

Objectives:  The luminal surface of the gut is lined with a monolayer of epithelial cells that acts as a nutrient absorptive engine and protective barrier. To maintain its integrity and functionality, the epithelium is renewed every few days. Theoretical models are powerful tools that can be used to test hypotheses concerning the regulation of this renewal process, to investigate how its dysfunction can lead to loss of homeostasis and neoplasia, and to identify potential therapeutic interventions. Here we propose a new multiscale model for crypt dynamics that links phenomena occurring at the subcellular, cellular and tissue levels of organisation.


Cell Reports | 2014

Quantification of Crypt and Stem Cell Evolution in the Normal and Neoplastic Human Colon

Ann-Marie Baker; Biancastella Cereser; Samuel Melton; Alexander G. Fletcher; Manuel Rodriguez-Justo; Paul J. Tadrous; Adam Humphries; George Elia; Stuart A. McDonald; Nicholas A. Wright; B. D. Simons; Marnix Jansen; Trevor A. Graham

Summary Human intestinal stem cell and crypt dynamics remain poorly characterized because transgenic lineage-tracing methods are impractical in humans. Here, we have circumvented this problem by quantitatively using somatic mtDNA mutations to trace clonal lineages. By analyzing clonal imprints on the walls of colonic crypts, we show that human intestinal stem cells conform to one-dimensional neutral drift dynamics with a “functional” stem cell number of five to six in both normal patients and individuals with familial adenomatous polyposis (germline APC−/+). Furthermore, we show that, in adenomatous crypts (APC−/−), there is a proportionate increase in both functional stem cell number and the loss/replacement rate. Finally, by analyzing fields of mtDNA mutant crypts, we show that a normal colon crypt divides around once every 30–40 years, and the division rate is increased in adenomas by at least an order of magnitude. These data provide in vivo quantification of human intestinal stem cell and crypt dynamics.


Philosophical Transactions of the Royal Society A | 2010

A hybrid approach to multi-scale modelling of cancer

James M. Osborne; Alex Walter; S. K. Kershaw; Gary R. Mirams; Alexander G. Fletcher; Pras Pathmanathan; David J. Gavaghan; Oliver E. Jensen; Philip K. Maini; H. M. Byrne

In this paper, we review multi-scale models of solid tumour growth and discuss a middle-out framework that tracks individual cells. By focusing on the cellular dynamics of a healthy colorectal crypt and its invasion by mutant, cancerous cells, we compare a cell-centre, a cell-vertex and a continuum model of cell proliferation and movement. All models reproduce the basic features of a healthy crypt: cells proliferate near the crypt base, they migrate upwards and are sloughed off near the top. The models are used to establish conditions under which mutant cells are able to colonize the crypt either by top-down or by bottom-up invasion. While the continuum model is quicker and easier to implement, it can be difficult to relate system parameters to measurable biophysical quantities. Conversely, the greater detail inherent in the multi-scale models means that experimentally derived parameters can be incorporated and, therefore, these models offer greater scope for understanding normal and diseased crypts, for testing and identifying new therapeutic targets and for predicting their impacts.


Journal of Theoretical Biology | 2012

A theoretical investigation of the effect of proliferation and adhesion on monoclonal conversion in the colonic crypt

Gary R. Mirams; Alexander G. Fletcher; Philip K. Maini; Helen M. Byrne

The surface epithelium lining the intestinal tract renews itself rapidly by a coordinated programme of cell proliferation, migration and differentiation events that is initiated in the crypts of Lieberkühn. It is generally believed that colorectal cancer arises due to mutations that disrupt the normal cellular dynamics of the crypts. Using a spatially structured cell-based model of a colonic crypt, we investigate the likelihood that the progeny of a mutated cell will dominate, or be sloughed out of, a crypt. Our approach is to perform multiple simulations, varying the spatial location of the initial mutation, and the proliferative and adhesive properties of the mutant cells, to obtain statistical distributions for the probability of their domination. Our simulations lead us to make a number of predictions. The process of monoclonal conversion always occurs, and does not require that the cell which initially gave rise to the population remains in the crypt. Mutations occurring more than one to two cells from the base of the crypt are unlikely to become the dominant clone. The probability of a mutant clone persisting in the crypt is sensitive to dysregulation of adhesion. By comparing simulation results with those from a simple one-dimensional stochastic model of population dynamics at the base of the crypt, we infer that this sensitivity is due to direct competition between wild-type and mutant cells at the base of the crypt. We also predict that increases in the extent of the spatial domain in which the mutant cells proliferate can give rise to counter-intuitive, non-linear changes to the probability of their fixation, due to effects that cannot be captured in simpler models.


Progress in Biophysics & Molecular Biology | 2013

Implementing vertex dynamics models of cell populations in biology within a consistent computational framework.

Alexander G. Fletcher; James M. Osborne; Philip K. Maini; David J. Gavaghan

The dynamic behaviour of epithelial cell sheets plays a central role during development, growth, disease and wound healing. These processes occur as a result of cell adhesion, migration, division, differentiation and death, and involve multiple processes acting at the cellular and molecular level. Computational models offer a useful means by which to investigate and test hypotheses about these processes, and have played a key role in the study of cell-cell interactions. However, the necessarily complex nature of such models means that it is difficult to make accurate comparison between different models, since it is often impossible to distinguish between differences in behaviour that are due to the underlying model assumptions, and those due to differences in the in silico implementation of the model. In this work, an approach is described for the implementation of vertex dynamics models, a discrete approach that represents each cell by a polygon (or polyhedron) whose vertices may move in response to forces. The implementation is undertaken in a consistent manner within a single open source computational framework, Chaste, which comprises fully tested, industrial-grade software that has been developed using an agile approach. This framework allows one to easily change assumptions regarding force generation and cell rearrangement processes within these models. The versatility and generality of this framework is illustrated using a number of biological examples. In each case we provide full details of all technical aspects of our model implementations, and in some cases provide extensions to make the models more generally applicable.


PLOS Computational Biology | 2015

Steering Evolution with Sequential Therapy to Prevent the Emergence of Bacterial Antibiotic Resistance

Daniel Nichol; Peter Jeavons; Alexander G. Fletcher; Robert A. Bonomo; Philip K. Maini; Jerome L. Paul; Robert A. Gatenby; Alexander R. A. Anderson; Jacob G. Scott

The increasing rate of antibiotic resistance and slowing discovery of novel antibiotic treatments presents a growing threat to public health. Here, we consider a simple model of evolution in asexually reproducing populations which considers adaptation as a biased random walk on a fitness landscape. This model associates the global properties of the fitness landscape with the algebraic properties of a Markov chain transition matrix and allows us to derive general results on the non-commutativity and irreversibility of natural selection as well as antibiotic cycling strategies. Using this formalism, we analyze 15 empirical fitness landscapes of E. coli under selection by different β-lactam antibiotics and demonstrate that the emergence of resistance to a given antibiotic can be either hindered or promoted by different sequences of drug application. Specifically, we demonstrate that the majority, approximately 70%, of sequential drug treatments with 2–4 drugs promote resistance to the final antibiotic. Further, we derive optimal drug application sequences with which we can probabilistically ‘steer’ the population through genotype space to avoid the emergence of resistance. This suggests a new strategy in the war against antibiotic–resistant organisms: drug sequencing to shepherd evolution through genotype space to states from which resistance cannot emerge and by which to maximize the chance of successful therapy.


Physical Biology | 2011

Comparing a discrete and continuum model of the intestinal crypt.

Philip J. Murray; Alex Walter; Alexander G. Fletcher; Carina M. Edwards; Marcus J. Tindall; Philip K. Maini

The integration of processes at different scales is a key problem in the modelling of cell populations. Owing to increased computational resources and the accumulation of data at the cellular and subcellular scales, the use of discrete, cell-level models, which are typically solved using numerical simulations, has become prominent. One of the merits of this approach is that important biological factors, such as cell heterogeneity and noise, can be easily incorporated. However, it can be difficult to efficiently draw generalizations from the simulation results, as, often, many simulation runs are required to investigate model behaviour in typically large parameter spaces. In some cases, discrete cell-level models can be coarse-grained, yielding continuum models whose analysis can lead to the development of insight into the underlying simulations. In this paper we apply such an approach to the case of a discrete model of cell dynamics in the intestinal crypt. An analysis of the resulting continuum model demonstrates that there is a limited region of parameter space within which steady-state (and hence biologically realistic) solutions exist. Continuum model predictions show good agreement with corresponding results from the underlying simulations and experimental data taken from murine intestinal crypts.


eLife | 2016

Unipolar distributions of junctional Myosin II identify cell stripe boundaries that drive cell intercalation throughout Drosophila axis extension

Robert J Tetley; Guy B. Blanchard; Alexander G. Fletcher; Richard J. Adams; Bénédicte Sanson

Convergence and extension movements elongate tissues during development. Drosophila germ-band extension (GBE) is one example, which requires active cell rearrangements driven by Myosin II planar polarisation. Here, we develop novel computational methods to analyse the spatiotemporal dynamics of Myosin II during GBE, at the scale of the tissue. We show that initial Myosin II bipolar cell polarization gives way to unipolar enrichment at parasegmental boundaries and two further boundaries within each parasegment, concomitant with a doubling of cell number as the tissue elongates. These boundaries are the primary sites of cell intercalation, behaving as mechanical barriers and providing a mechanism for how cells remain ordered during GBE. Enrichment at parasegment boundaries during GBE is independent of Wingless signaling, suggesting pair-rule gene control. Our results are consistent with recent work showing that a combinatorial code of Toll-like receptors downstream of pair-rule genes contributes to Myosin II polarization via local cell-cell interactions. We propose an updated cell-cell interaction model for Myosin II polarization that we tested in a vertex-based simulation. DOI: http://dx.doi.org/10.7554/eLife.12094.001

Collaboration


Dive into the Alexander G. Fletcher's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gary R. Mirams

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge